

Shannon Technology and Energy Park (STEP) Power Plant

Appendix A5.1: Onshore Site Investigation Report

Shannon LNG Limited

Shannon Technology and Energy Park (STEP) Power Plant Volume 4_Appendices

[Blank Page]

IGSL Limited Ground Investigation Tarbert / Ballylongford Onshore SI Project No. 12239–Volume 1 Introduction to Site Investigation Works On Behalf Of Arup Consulting Engineers

TABLE OF CONTENTS

1.0	Introduction									
2.0	Proposed Development									
3.0	Scope	of Worl	K	4						
4.0	Report Structure									
5.0	Fieldwork									
	5.1	Rotary	Coring	6						
	5.2	Trial P	its	6						
	5.3	Pump '	Test	7						
	5.4 Standpipe Installations and Groundwater Monitoring									
	5.5 Downhole Geologging									
	5.6 Scanline Survey									
	5.7 Surface Geophysical Surveys									
	5.8	Packer	Tests	8						
	5.9	Survey	ving	8						
	5.10	Photog	graphy	9						
	5.11	Soil an	d Rock Descriptions	9						
6.0	Labor	atory To	esting	10						
	6.1	Soil La	aboratory tests	11						
		6.1.1	Moisture Content	11						
		6.1.2	Atterberg Limits	11						
		6.1.3	Particle Size Distributions	11						
		6.1.4	Moisture Condition Value Tests	12						
		6.1.5	CBR Analysis	12						
		6.1.6	Compaction/CBR/MCV	12						
		6.1.7	Pinhole Tests	13						
		6.1.8	Maximum and Minimum Density	13						
		6.1.9	Pyknometer Test	13						
		6.1.10	Triaxial Permeability Test	13						
	6.2	Rock L	Labortaory Tests	14						
		6.2.1	Uniaxial Compressive Strength Testing	14						
		6.2.2	Point Load Strength Tests	14						
		6.2.3	Los Angeles Abrasion Test	14						
		6.2.4	Slake Durability Test	14						
		6.2.5	Acoustic Velocities	14						
	6.3	Chemi	cal Laboratory Tests	15						
		6.3.1	Sulphate and pH Tests	15						
		6.3.2	Nitrates and Phosphates	15						
		6.3.3	Electrical Conductivity, Sodium, Chloride and Total Alkalinity	16						
7.0	Elec	ctronic I	Data	17						
8.0	References									

Figures

Site Location
Drawing of Main Site Investigation Exploratory Holes
Drawing of Embankment - Pond Site Investigation Exploratory Hole
21
Report Layout and Content

1. INTRODUCTION

The proposed site is located in the townlands of Knockfinglus and Ralappane between Ballylongford and Tarbert in north County Kerry, Ireland. It is proposed to construct a new industrial facility on this site and as part of the development works an investigation of the subsoil conditions was supervised by Arup Consulting Engineers (Arup) on behalf of their Client, Shannon LNG.

This report contains the factual information obtained from the ground investigation. No interpretation of this data was requested.

2. PROPOSED DEVELOPMENT

The proposed development is a Liquid Natural Gas (LNG) Import Terminal which comprises the construction of four storage tanks and associated processing, administration buildings and infrastructure. To the west of this development, an Embankment – Pond is proposed.

3. SCOPE OF WORK

The purpose of the ground investigation is to provide information on the sub-soil conditions, bedrock geology and groundwater regime at the site. Two site investigations were undertaken, the first investigation was carried out from October 2006 to January 2007 in the area of the proposed import terminal and is referred to as the Main Onshore Site Investigation Report. Additional works were undertaken in the proposed Embankment – Pond area to the west of the main development between February and April 2007.

The initial fieldwork programme for the Main Onshore Site Investigation included

- twenty six rotary coreholes, twenty of which were located under the storage tanks;
- thirty three trial pits, located approximately on a 100m grid;
- six geologging holes;
- scanlines along the coastal section;
- one pump test;

- 2-D Resistivity, Electromagnetic and Seismic Refraction Geophysical Survey;
- Soil, Rock and, Chemical Laboratory Testing.

Additional work was completed at the Embankment – Pond site which comprised:

- four rotary coreholes located along the footprint of the embankment;
- twenty one trial pits, located along the footprint of the embankment and and the pond;
- four geologging holes;
- 2-D Resistivity and Seismic Refraction Geophysical Survey;
- Soil and Chemical Laboratory Testing.

A programme of laboratory testing was scheduled by Arup to assist with soil and rock classification.

This is a factual report, which describes the various field and laboratory operations but does not include an interpretation of the findings in relation to the proposed works. The location and layout of the site are presented in Figure 1. Exploratory hole locations for both the Main and the Embankment – Pond Site Investigation are presented in Figure 2 and 3.

4. **REPORT STRUCTURE**

The report has been separated into four volumes which are the following:

- Volume 1: Introduction to Site Investigation Works;
- Volume 2: Main Onshore Site Investigation. Appendices comprising field records, photographs, geologging, scanline and laboratory data;
- Volume 3: Main Onshore Site Investigation. Appendices comprising the Pump Test and Geophysical Report;
- Volume 4: Embankment Pond Site Investigation.

The layout and content of volumes 2 to 4 are presented in Appendix A.

5. FIELDWORK

5.1 Rotary Coring

Cable percussion drilling was not considered as a method for investigating the soil as ground conditions are unsuitable. As a result, rotary coring techniques were employed.

Where rotary coring encountered overburden material in-situ standard penetration testing (SPT) was performed to obtain an indication of the overburden consistency to rock level.

Rotary coring was carried out using an air/mist flush to ensure good recovery within the bedrock. Cores of 102mm (S size) and 84mm (P size) diameter were recovered and transported from site in wooden storage boxes.

The recovered core was inspected by a qualified engineering geologist from IGSL Ltd and logged broadly in accordance with BS 5930: 1999. In addition a detailed fracture log (spacing between successive core joints measured from the cores) was made of the core recovered and the strength of representative units determined using Point Load and Uniaxial Compression Strength (UCS) tests.

All cores were labelled and photographed for inclusion in the report. Core photographs are also presented in digital format.

5.2 Trial Pits

Trial pits were excavated in the stipulated locations to permit detailed examination of the upper soils and to permit recovery of large samples for analysis. Pits also provide information on soil stability and water ingress. Pits were excavated using a tracked mechanical excavator.

The majority of trial pits were excavated to depths of between 2.0 and 4.5 m BGL. At some locations, excavation was prematurely terminated. This was mainly due to hard ground conditions and the presence of bedrock.

Hand shear vanes were carried out in the pit sidewalls to depths of up to 1.2 metres BGL in order to estimate the in-situ undrained shear strengths of the soils.

Pits were backfilled with the excavated material placing and compacting in layers.

5.3 Pump Test

A pump test was undertaken on the site to determine if the required amount of water for the construction stage of the project was obtainable on site. The pump well (PW01) was constructed using symmetrix open hole drilling. Four step down tests were completed to calibrate the equipment followed by the pump test which was terminated after 28.60 hrs due to low flow rates. Two nearby coreholes were used as monitoring wells, to measure the effect of drawdown from the pumping. A description of the pumping test is presented in Volume 3, Appendix B of this report.

5.4 Standpipe Installations and Groundwater Monitoring

At selected locations, standpipes were installed to permit long-term monitoring of water levels. The standpipe installations were constructed in accordance with the BS5930. In general the construction comprised a response zone of 50mm and 27mm slotted HDPE pipe surrounded by a gravel pack. This response zone was sealed with bentonite grout. Un-slotted pipe was used through the sealed section to surface.

Steel lockable head-works or flush steel covers were constructed to protect the installation.

On completion of boring, all boreholes in which no installations were constructed were backfilled.

A set of water level readings were taken in the standpipes during the fieldwork period and these are tabulated in Volume 2 and 4 of the report.

5.5 Downhole Geologging

Down hole geologging was undertaken by Borehole Logging Solutions for the Main Onshore Site Investigation and by Robertsons Geologging for the Embankment – Pond Site Investigation. In both cases an optical televiewer was used to provide a continuous, detailed and orientated 360° image of the corehole walls. The data obtained was interpreted to obtain a complete feature analysis of the rock that includes dip, strike, frequency and fracture aperture. A visual 360° image of the insitu coreholes is also included in the reports which are presented in Volume 2 and 4 of the factual report. One corehole drilled during the main site investigation collapsed therefore the full depth of the hole could not be logged.

5.6 Scanline Survey

Scanline surveys were completed along the foreshore of the beach, where cross sections through the local stratigraphy were exposed. Data regarding bedrock discontinuity orientation and condition were recorded and results are presented in Volume 2 of the report.

5.7 Surface Geophysical Surveys

Two geophysical surveys were undertaken in the main development area and along the footpirint of the embankment. The objective of the survey was to profile variations in bedrock topography and to provide information on geotechnical properties of the overburden and bedrock. The surveys were undertaken by Apex Geoservices. Problems were encountered during the fieldwork period during the main site investigation due to the poor weather conditions. As a result some of the seismic refraction lines were completed in December 2006 and the remainder in March 2007.

Details of the survey are presented in Volume 3, Appendix A and Volume 4, Appendix E of the factual report.

5.8 Packer Tests

A wireline hydraulically inflated packer system was used to access the hydrogeological properties of various horizons within the bedrock under the footprint of the proposed embankment - pond. Double 'Injection' packers tests were undertaken at depths indicated by the engineer. The Inject (Lugeon) Test consists of isolating a borehole and injecting water under pressure in to the rock to determine the effective transmissivity (T) of the zone. The data recorded during the test simply consists of the flow rate and the corresponding pressure when 'steady state' conditions have been achieved. The data is recorded over a number of increasing and decreasing steps as is detailed in the Packer Test Data sheets presented in Volume 4, Appendix C.

5.9 Surveying

After completion of the exploratory works the 'as built' location of all exploratory points was determined to National Grid Co-ordinates and levelled to Malin Head datum.

As built survey work was performed by IGSL using Realtime Kinetic (RTK) GPS methods.

5.10 Photography

Rock cores recovered from the rotary coreholes were photographed at the time of geological logging in the laboratory. Open trial pit excavations and spoil material were also photographed .

Photographs have are presented in an Addendum to Volume 2 and 4 of the report.

5.11 Soil and Rock Descriptions

The soil descriptions were completed by IGSL Ltd and are in accordance with BS5930: 1999. In the description of the glacial till which, in some cases, has a low fines content, the delineation between fine and coarse soils has been relaxed by IGSL Ltd in accordance with the code.

In this code, well-graded soils, which exhibit cohesion and contain sufficient fine grains to fill the spaces between the coarse grains can be described as having silt or clay as the dominant component. The description is, therefore, based on the soil's engineering behaviour rather than on its composition. During this project, the transition from coarse grained to fine grained behaviour was implemented when the fines content was typically in the range 15-40%.

Where grading analysis of granular soils revealed a fines content of less than 2%, this was omitted from the description of the soil.

6. LABORATORY TESTING

Laboratory testing was performed on a selection of samples as specified by Arup via laboratory test schedules.

Most samples removed from site were labelled with sample labels. The sample labels included the location number, depth of sample, date of sampling and a reference number. The reference number is a four digit number ranging between 0001 and 9999 with a letter prefix e.g. R1234.

If duplication does occur, this does not present a problem to tracking samples through the field procurement and laboratory testing stages, as each label carries information on location reference, depth, and date of sampling which ensures that each sample label is unique.

It is important to appreciate that the measured moisture content values of some test specimens may differ from those measured shortly after sampling. This is due to the movement, and possibly loss, of moisture during transportation. This occurs particularly in sandy soils or in clays, which contain pockets or layers of granular material. With sandy silts, vibration can cause loss of water while, in clays containing granular material, water can migrate from the granular zones to the matrix material. Softening due to water migration can result in soil performance that may not reflect the true in-situ condition of the soil. Where obvious soil deterioration was noted, samples were recorded as unsuitable. Moisture content values related to these tests should be regarded as "as received" values.

It is accepted that, for practical reasons it is not possible to recover or test samples of very coarse deposits. In some instances, therefore, it may be considered valid to apply corrections to results obtained in the laboratory to reflect the actual performance of the total soil mass.

Soil laboratory tests were undertaken both by IGSL Ltd and Terratek Site Investigation and Laboratory Servives Ltd. There are discrepancies in soil descriptions between the results from both laboratories. This is primarily due to the subjectivity of the laboratory technicians describing the soil.

Tests were performed in approved laboratories. Unless otherwise stated the tests are in accordance with BS 1377:1990.

The following are certain aspects of the testing which are specific to this project.

6.1 Soil Laboratory Tests

6.1.1 Moisture Content

The moisture contents of disturbed samples (sealed bags, tubs) were determined on material passing the 20 mm sieve. This is to ensure that valid comparisons can be made between moisture content values obtained from various tests such as compaction, MCV and CBR, which are carried out on samples passing the 20 mm sieve.

Moisture content values for selected disturbed samples were determined as soon as possible after sampling.

6.1.2 Atterberg Limits

The liquid limits were determined using the cone method as described in BS 1377 Pt.2:1990. In the majority of cases, the specimens for liquid and plastic limit determination were obtained at their natural state by removal of particles greater than 425 μ m. This is the definitive method, as stated in BS1377: Part 2: 1990, Clause 4. Where this was considered impractical, specimens were air-dried and sieved, as recommended in BS 1377.

While BS 1377 suggests that the results should include the percentage of material passing the 425 micron sieve, this information can be misleading in the case of coarse soils such as the glacial till encountered on this site. In the laboratory the percentage can only be related to the sample presented for testing while the actual soil stratum may contain coarse gravel and cobbles which would not necessarily be contained in the sample. Inclusion of coarse soil in a small sample would also distort the proportions.

6.1.3 Particle Size Distributions

Particle size distribution tests were carried out to BS1377: Part 2: 1990, method 9.2 (Wet sieving). Where specified by the Engineer hydrometer tests to BS1377: Part 2: 1990, Method 9.5 were conducted to establish the percentage of silt and clay present.

The necessity to exclude the coarse fraction such as coarse gravel and cobbles should be considered when reviewing and assessing the laboratory test results in relation to actual in-situ soil composition.

In addition, in the absence of an accompanying grading analysis, the percentage may only be estimated from visual examination.

To obtain particle size distributions, wet sieving methods were used, as specified. Cobble and boulder size material was excluded from all tests while, in some instances the maximum particle size was further limited to take into account the mass of the sample. BS 1377 suggests that, for specimens with less than 10% retained on the 20 mm sieve a sample mass of 2.5 kg should be used. This compares with a sample mass of 17 kg for specimens with less than 10% retained on the 37.5mm sieve. Reference should, therefore, be made to the trial pit records for a full description of the soil stratum.

6.1.4 Moisture Condition Value Tests

MCV tests were generally performed on specimens at their "as sampled" water content values obtained after removal of material retained on the 20 mm sieve. The procedures are in accordance with BS1377: Part4: 1990, Clause 5.4. For selected samples, tests were performed over a range of water content values, in conjunction with compaction tests or for calibration purposes

6.1.5 CBR Analysis

BS 1377: 1990: Part 4, Clause 7 ' Determination of California Bearing Ratio' describes six methods of preparing specimens. The methods are sub-divided into dry density specification and compactive effort specification. The soil can be placed in the test mould by a number of methods such as compression in layers, rammer compaction or vibrating hammer.

For tests on samples recovered from proposed grade level, specimens should be prepared to a density which is as close as possible to the in-situ density.

To permit a valid comparison between CBR tests carried out at grade and those carried out in conjunction with compaction tests, all tests were performed on specimens, compacted to a density equal to that obtained in the 2.5 kg compaction test.

To minimise disturbance, specimens were prepared in accordance with clause 7.2.3.3 Method 2. This entails compressing the soil into the test mould in three equal layers using a hydraulic ram.

6.1.6 Compaction/CBR/MCV

Compaction tests were carried out in accordance with BS1377: Part4: 1990, Method 3.3 (soil passing the 20 mm sieve). In this test the 2.5kg rammer is used. By limiting the maximum particle size to 20 mm a sample size of 10kg is adequate. By comparison, for test 3.4, compaction of soils containing coarse gravel, a minimum soil mass of 50kg is recommended Where requested by Arup, CBR tests were performed at each moisture content on the compaction curve, placing the soil in the mould in three layers by compression, to the density achieved in the compaction test. MCV tests were also performed at each moisture content.

6.1.7 Pinhole Tests

The Pinhole Tests was undertaken in accordance with BS1377: Part 5. They were carried out by Terratek Site Investigation and Laboratory Services Ltd, on samples collected during the embankment-pond site investigation.

The purpose of the test was to attempt to access the dispersibility of the soil by measuring the size of a cavity after distilled water was pushed through it under a high hydraulic gradient.

6.1.8 Maximum and Minimum Density

This test was undertaken in accordance with BS1377: Part 4 to determine the maximum and minimum density to which a soil sample can be compacted.

6.1.9 Pyknometer Test

The small pyknometer test was undertaken in accordance with BS1377: Part 2 by Terratek Site Investigation and Laboratory Services Ltd. This test measures the particle density of clay, silt and sand sized particles.

6.1.10 Triaxial Permeability Test

The triaxial permeability tests were undertaken in accordance with BS1377: Part 6. This test was completed by Terratek Site Investigation and Laboratory Services Ltd in the United Kingdom, on samples collected during the embankment – pond site investigation.

The test uses a recompacted specimen set up for a triaxial compression test. The volume of water passing through the soil in a known time, and under a constant hydraulic head gradient is measured.

It should be noted that some of the resulting permeabilies of the tests appear very low and should be viewed with caution.

6.2 Rock Laboratory Tests

6.2.1 Uniaxial Compressive Strength Testing

The UCS tests were undertaken in accordance with ISRM 1981 standards. In some cases specified UCS tests could not be undertaken due to fractures intersecting the rock core or specimens breaking during preparation (sawing). Some of the depths may, therefore, differ from the specified depths. As an added extra, some rock samples were sent to Fugro Engineering Services Ltd to determine stress-strain curves, Young's modulus and Poissons Ratio in uniaxial compression. This test was carried out in accordance with the ISRM 1981 standards.

6.2.2 Point Load Strength Tests

Point load strength tests were undertaken in accordance with ISRM 1981. The point load tests were conducted under diametral and axial loading. Diametral and axial test results are presented separately. All point load (Is) values have been corrected for sample size to standard Is_{50} values.

6.2.3 Los Angeles Abrasion Test

The Los Angeles Abrasion Tests were undertaken in accordance with BS EN1097-2:1998. The samples were placed in the Los Angeles abrasion testing machine and rotated by a certain number of revolutions. The Los Angeles Coefficient is calculated as the loss in weight of the sample from the start to the end of the test. This weight loss is expressed as a percentage of the original weight and is reported as the percentage wear.

6.2.4 Slake Durability Test

The Slake Durability Tests were undertaken in accordance with ISRM 1981 by Fugro Engineering Services in the United Kingdom. The test is intended to access the resistance offered by a rock sample to weakening and disintegration when subjected to two standard cycles of drying and wetting. The slake durability index is calculated as the percentage ratio of final to initial dry sample masses.

6.2.5 Acoustic Velocities

Acoustic velocities were carried out on rock samples by the University of Redding, United Kingdom in accordance with ISRM 1981. Samples were measured to calculate laboratory compressional (P-wave) velocity, shear (S-wave) velocity on selected core samples. Vp and Vs ratios were also calculated to check on the consistency of the Vp and Vs measurements.

6.3 Chemical Laboratory Tests

6.3.1 Sulphate and pH Tests

Determination of pH values, sulphate content of soil and water are in accordance with BS 1377: Part3: 1990.

The sulphate content of soil samples was determined as the acid-soluble sulphate content (total sulphate content) which is obtained from an acid extract. Analysis was then carried out by the gravimetric method. Results are generally expressed as % SO3 except where otherwise stated.

The gravimetric method was used for groundwater analysis.

pH values were obtained in accordance with Clause 9 of BS 1377: Part 3: 1990

6.3.2 Nitrates and Phosphates

The nitrates and phosphates were carried out by ALcontrol Laboratories in Dublin, Ireland. The following standards and references were used to undertake the tests:

Nitrate by KONE (S3LS TM 102D)

References:

- Kone Operator's Manual.
- SLS TM 015 KoneAnalyser –Operator's Guide
- Standard Methods for the Examination of Water and Waste Water 20th edition American Public Health Association, American Water Works Association and Water Environment Federation 4500- H 4-119

Phosphate by KONE (SLS TM 100)

References:

- Kone Operator's Manual;
- SLS TM 140 –Kone Lab 30 Analyser Operator's Guide;
- SLS TM 015 Kone Lab 20 Analyser Operator's Guide;
- AWWA/APHA 19th Edition Method 4500-P E;
- Hazardous Substances Assessment No. 2.

6.3.3 Electrical Conductivity, Sodium and Chloride and Total Alkalinity

The tests were carried out by ALcontrol Laboratories in Dublin, Ireland. The following standards and references were used to undertake the tests:

Sodium and Potassium by Flame Photometer (SLS TM 083D)

This method is an in-house method.

Chloride by KONE (SLS TM 097D)

References:

- Konelab 20 Manual;
- SLS TM 015 Kone Lab 20 Analyser Operator's Guide;
- EPA Methods 325.1 & 325.2;
- COSHH Sheet 23.

Electrical Conductivity (SLS TM 120D)

References:

- Review of Electrolytic Conductance standards, Wu, Koch, Hamer, and Kay, J. Soln. Chem. 1987, 16,985-997;
- Thermo Orion bench top pH/Conductivity meter model 550A manual;
- Thermo Orion AS3000 series Autosampler manual;
- 2510B Standard Methods for the Examination of Water and Wastewaters, 20th Edition, 1998, APHA, AWWA, WEF.

Alkalinity (SLS TM 043)

References:

- BS2690 : Part109 : 1984 Alkalinity in water;
- The Determination of Alkalinity and Acidity in water 1981, Blue Book-MEWAM.

7.0 Electronic Data

In accordance with the specification, the final report data is also issued in electronic format.

8.0 References and Standards

General Site Investigation

- 1. BS 5930; Code of Practice for Site Investigations; British Standards Institute; 1999.
- Manual of Contract Documents for Highway Works, Volume 5, Section 3, Ground Investigation, Part 4: Specification

Soil and Rock Laboratory Testing

- 3. BS1377; British Standard Methods of Test for Soils for Civil Engineering Purposes; British Standards Institute;1990.
- 4. BS EN1097-2:1998: Los Angles Abrasion Test.
- ISRM Suggested Methods Rock Characterisation, Testing and Monitoring – Editor E.T. Brown, International Society of Rock Mechanics, 1981.

Chemical Laboratory Testing

- 6. AWWA/APHA 19th Edition Method 4500-P E.
- 7. BS2690 : Part109 : 1984 Alkalinity in water.
- 8. COSHH Sheet 23.
- 9. EPA Methods 325.1 & 325.2.
- 10. Hazardous Substances Assessment No. 2.
- 11. Kone Lab 20 Analyser Operator's Manual.
- Review of Electrolytic Conductance standards, Wu, Koch, Hamer, and Kay, J. Soln. Chem. 1987, 16,985-997.
- 13. SLS TM 015 Kone Lab 20 Analyser Operator's Guide.
- 14. SLS TM 140 -Kone Lab 30 Analyser Operator's Guide.
- 15. Standard Methods for the Examination of Water and Waste Water 20th edition American Public Health Association, American Water Works Association and Water Environment Federation 4500- H 4-119.
- 16. Thermo Orion bench top pH/Conductivity meter model 550A manual.
- 17. Thermo Orion AS3000 series Autosampler manual.
- The Determination of Alkalinity and Acidity in water 1981, Blue Book-MEWAM.
- 2510B Standard Methods for the Examination of Water and Wastewaters, 20th Edition, 1998, APHA, AWWA, WEF.

Packer Tests

20. Houlsbey, A.C. 1976. Routine Interpretation of the Lugeon Water Test. Quaterly Journal of Engineering Geology, Vol 9 pp. 303 – 313.

Figures

ION FIGURES	Scales 1:50 Checked	00 @ A3 Approved	Originat	or EG
TION LINFS	IAI	RUP	Tel 021–4277670 Fa EMail cork@arup.com	x 021-4272345
			15 Oliver Plunkett Stree	t Cork
	TP31	102633.425	148882.664	8.917
	TP30	102734.671	148875.129	15.883
5/	TP29	102485.326	148780.418	8.962
	TP28	102584.995	148784.831	16.9
	TP27	102684 656	148781 265	20.428
	TP25	102236.255	140000.074	13.653
	1P24 TD25	102344.838	148709.512	11.561
	TP23	102434.595	148680.682	14.984
	TP22	102535.095	148686.732	20.12
4	TP21	102632.779	148641.615	28.127
Ŵ	TP20	102735.74	148668.155	29.318
KIN :	TP19	102634.942	148585.631	31.035
	TP18	102533.26	148582.374	26.926
Indat	TP17	102433.673	148581.819	22.483
NAKINEEL	TP16	102336 659	148584 49	20.238
	TP15	102133.1/1	140007.347	17 607
\backslash	1P13 TD14	102036.707	148583.319	7.214
	TP12	101937.024	148584.019	6.815
T Y	TP11	102126.766	148534.317	12.379
\ .	TP10	102002.806	148487.529	8.439
\backslash	TP9	102080.012	148490.98	11.214
	TP8	102170.614	148486.777	15.956
> \	TP7	102282.167	148483.421	21.396
/ /	TP6	102383.71	148481.047	25.687
N N	TP5	102084 892	148387.388	13.169
	TP4	102183 249	148386 634	18 262
	TP3	102104.447	148386 066	23 125
	TP2	102227.834	148284 02	18.967
5 11	Trial Pits	100007-001	14000 70 1	40.007
	RC26	102163.972	148408.974	16.613
	RC25	102234.404	148450.017	19.023
	RC24	102 143.352	148503 385	10.571
1	RC22	102008.945	148540 507	12 107
///	RC21	102694.453	148/68.896	21.501
	RC20	102709.254	148826.109	18.096
	RC19	102648.523	148842.776	12.965
	RC18	102631.079	148783.914	19.002
	RC17	102543.067	148726.548	18.552
	RC16	102567.786	148690.586	21.678
	RC15	102583.362	148736.224	22.28
	RC14	102517 059	148762.875	13.464
	RC12	102373.942	140000.953	13.059
NDRA2601	RC11	102419.581	148657.717	16.492
Quarry	RC10	102438.558	148626.089	19.588
and indention for a	RC9	102457.889	148678.488	15.614
and individual in the first of the second se	RC8	102381.655	148637.417	17.342
Quarr (Disus	RC7	102272.717	148640.021	19.091
× · · · · ·	RC6	102297.397	148600.339	21.717
No.	RC5	102313.816	148662.468	17.912
	RC4	102235.223	148675.356	14.179
	RUJ	102233.723	140010.202	

Location Easting

102105.531

Coreholes PW01

RC1

RC2

Northing

102366.81 148527.735

102702.336 148937.664

148474.28

Elevation

13.16

23.32

5.544

<u>Appendix A</u> Report Layout and Content

Volume 2: Main Onshore Site Investigation

Appendices

Appendix A	- Main Onshore SI Rotary Corehole Records
Appendix B	- Main Onshore SI Trial Pit Records
Appendix C	- Main Onshore SI Downhole Geologging Data
Appendix D	- Main Onshore SI Geological Mapping and Scanline Data
Appendix E	- Main Onshore SI Groundwater Monitoring Data
Appendix F	- Main Onshore SI Soil Laboratory Test Data
Appendix G	- Main Onshore SI Chemical Laboratory Test Data
Appendix H	- Main Onshore SI Rock Laboratory Test Data
Appendix I	- Main Onshore SI Exploratory Hole Location Map
Addendum	- Main Onshore SI Photographs

Volume 3: Main Onshore Site Investigation

Appendices

Appendix A	- Main Onshore SI Geophysical Survey
Appendix B	- Main Onshore SI Pump Test Report

Volume 4: Embankment-Pond Site Investigation

Appendices

Appendix A	- Embankment – Pond SI Trial Pit Data
Appendix B	- Embankment – Pond SI Rotary Coring Data
Appendix C	- Embankment – Pond SI Packer Test Data
Appendix D	- Embankment – Pond SI Downhole Geologging Data
Appendix E	- Embankment - Pond SI Geophysical Survey
Appendix F	- Embankment - Pond SI Geotechnical Laboratory Test Data
	(Soils and Chemical)
Appendix G	- Embankment - Pond SI Site Location Maps
Appendix H:	- Embankment – Pond Groundwater Monitoring
	Installations
Appendix I:	- Embankment – Pond Groundwater Levels
Addendum	- Embankment - Pond SI Photographs

IGSL Limited Ground Investigation Tarbert / Ballylongford Main Onshore SI Project No. 12239 – Volume 3 On Behalf Of Arup Consulting Engineers

Appendices

Appendix A	- Main Onshore SI Geophysical Survey
Appendix B	- Main Onshore SI Pump Test Report

IGSL Limited Ground Investigation Tarbert / Ballylongford Onshore SI Project No. 12239 – Volume 4 Embankment – Pond SI On Behalf Of Arup Consulting Engineers

Appendices

Appendix A	- Embankment – Pond SI Trial Pit Data
Appendix B	- Embankment – Pond SI Rotary Coring Data
Appendix C	- Embankment – Pond SI Packer Test Data
Appendix D	- Embankment – Pond SI Downhole Geologging Data
Appendix E	- Embankment - Pond SI Geophysical Survey
Appendix F	- Embankment - Pond SI Geotechnical Laboratory Test Data
	(Soils and Chemical)
Appendix G	- Embankment - Pond SI Site Location Maps
Appendix H:	- Embankment – Pond Groundwater Monitoring
	Installations
Appendix I:	- Embankment – Pond Groundwater Levels
Addendum	- Embankment - Pond SI Photographs

Appendix A - Embankment – Pond SI Trial Pit Data

Trial Pit Records

Figures: TPA 1 - 20, ADD1

	7									REPORT N	UMBER			
	TRIAL PIT RECORD											12239		
CON	CONTRACT Tarbert/Baliylongford Embankment-Pond SI TRIAL PIT NO.													
co-o	ORDINA	TES(_) 101,863.90 E 148,062.00 N	GROUND LEV	EL (m)		14.75		DATE S	TARTE	D 15/0	2/2007 2/2007 2/2007			
CLIE ENGI	NT NEER	Shannon LNG Arup Consulting Engineers						EXCAVA METHO	ATION D	12t t	rack			
						â		Sample		es	(Pa)	rometer		
		Geotechnical Description		Legend	Depth (m)	Elevation (m	Water Strike	Sample Ref	Type	Depth	Vane Test (k	Hand Penetr (KPa)		
0.0	TOPS	OIL		<u>85 84</u>	0.20	14.55								
-	Firm ç	grey brown sandy gravelly CLAY		- <u>°,</u> ,- ,-°,-										
				·•····										
1.0	LANE	DRAIN trial pit terminated			1.00	13.75	Ţ							
	End c	of Trial Pit at 1.20m												
-														
2.0														
-														
3.0														
F														
-												-		
4.0					:	e.								
-				ł										
ŀ														
Gro Rap	oundwa	ter Conditions at 1.0mbgl		<u></u>			<u> </u>	<u>l</u> .		I				
GDT 13/														
No ISD 199	bility instablit	y noted	-											
Ger Lan	neral Ro nd Drain	emarks encountered trial pit terminate and mo	ved 5metres. Ma	iln Head	Ordnand	æ Datum	used.							
SILTP LO											Figure	TPA 1		

					<u></u>						REPORT NU	MBER			
(S	SL)		-	FRIAL PIT F	RECO	RD					12239				
CONT	CONTRACT Tarbert/Ballylongford Embankment-Pond SI TRIAL PIT NO.											TPA1A Sheet 1 of 1			
CO-01	RDINA	TES(_)	101,863.90 E 148,062.00 N	'EL. (m)		14.75		DATE ST	ARTED) 15/02/ TED 15/02/	2007 2007				
	IT IFFR	Shani Arun (non LNG Consulting Engineers						EXCAVA METHOD	TION	12t tra	ck			
	• int	, add					â			Sample	s	(F	neter		
Geotechnical Description					Legend	Depth (m)	Elevation (m O	Water Strike	Sample Ref	Type	Depth	Vane Test (KP	Hand Penetror (KPa)		
0.0	TOPS	OIL													
	Firm b subrou suban	prown san unded to s gular to a	dy slightly gravelly CLAY with subangular cobbles and occa angular boulders(300mm mag	n occasional sional kimum diameter)		0.30	14.45		AA9255 AA9256	B D	0.50-0.50 0.50-0.50				
- - - -	Stiff gr subrou angula	rey brown unded to ar boulder	n slightly sandy gravelly CLAY angular cobbles and occasior rs(500mm maximum diamete	' with some nal subangular to r)		0.90	13.85	₹							
-								AA9257 AA9258	B D	1.50-1.50 1.50-1.50					
-									AA9259 AA9260	B D	2.50-2.50 2.50-2.50				
3.0	Stiff g subro subro diame	Stiff grey black slightly sandy gravelly CLAY with occasional subrounded to subangular cobbles and occasional subrounded to subangular boulders(400mm maximum diameter)				3.00	11.75		AA9261 AA9262	В	3.50-3.50 3.50-3.50				
- - - - - - -	End c	of Trial Pil	t at 4.00m			4.00	10.75								
Grou Seep	Groundwater Conditions Seepage observed from 1.3mbgl, slight ingress noted														
Stab	ility nstablity	/ noted					·····		*****						
Gene Mailr	eral Re n Head	emarks Ordnance	e Datum used.									4-			
IGSL TP LC											Fig	ure T	PA1A		

6	Ð								F	REPORT NU	MBER		
6	ISL	I	RIAL PIT F	KECO	RD					122	239		
CONT	TRACT	Tarbert/Ballylongford Embankment-I	Pond SI					TRIAL PI	T NO.	D. TPA2			
	···					40.74		SHEET		Sheet	1 of 1		
CO-O	RDINATE	E S(_) 101,912.19 E 148,127.72 N	GROUND LEV	'EL (m)		12.71		DATE ST	ARTED	15/02 ED 15/02	/2007 /2007		
CLIEM ENGIN	NT NEER	Shannon LNG Arup Consulting Engineers						EXCAVA METHOD	TION	12t tra	ack		
						(<u>a</u>			Samples	5	a)	meter	
		Geotechnical Description		Legend	Depth (m)	Elevation (m C	Water Strike	Sample Ref	Type	Depth	Vane Test (KF	Hand Penetro (KPa)	
0.0	TOPSO	IL		<u>85 84</u>					<u> </u>				
-	Firm bro	wn slightly gravelly SILT with some si	ubrounded to	<u></u>	0.20	12.51							
-	angular cobbles and occasional subrounded to angular boulders(500mm maximum diameter) Stiff mottled redish brown grey sandy gravelly CLAY with some subrounded to angular cobbles and occasional subangular to angular boulders(600mm maximum diameter)				0.90	11.81		AA9247 AA9248	B D	0.50-0.50 0.50-0.50			
- 1.0					0.30								
								AA9249 AA9250	B D	1.50-1.50 1.50-1.50			
	Stiff gre to angul boulder	y slightly sandy gravelly CLAY with so lar cobbles and occasional subangula s(600mm maximum diameter)	slightly sandy gravelly CLAY with some subangular r cobbles and occasional subangular to angular 600mm maximum diameter)			10.51		AA9251 AA9252	B D	2.50-2.50 2.50-2.50			
	End of				4.00	8.71		AA9253 B AA9254 D	B D	3.50-3.50 3.50-3.50)		
-													
Grou No G	undwater Groundwat	Conditions ter observed.											
Stab	oility_									<u></u>			
Mino	or collapse	e trom 1.5-3.5mbgl											
Mailr	n Head O	rdnance Datum used.											
										Fi	igure	TPA 2	

TRIAL PIT RECORD										12220			
	sl/								122	.39			
CON	IRACT Tarbert/Ballylongford Embankment-I	Pond SI					TRIAL PT	Γ NO.	TPA3 Sheet	; 1 of 1			
co-0	RDINATES(_) 101,911.92 E 148,200.29 N	GROUND LEV	EL (m)		5.36		DATE ST DATE CO	ARTE	D 15/02/	2007 2007			
CLIE	NT Shannon LNG	12t tra	ck										
					â		; 	Sample	es	(Pa)	ometei		
	Geotechnical Description		Legend	Depth (m)	Elevation (m	Water Strike	Sample Ref	Type	Depth	Vane Test (K	Hand Penetr (KPa)		
0.0	TOPSOIL Soft brown fibrous PEAT (Von Post H4)		<u> XX XX</u>	0.10	5.26					<u> </u>			
	Stiff mottled grey blue slightly sandy slightly gr	avelly CLAY	<u></u>	0.30	5.06								
-	with organic fibres, occasional subrounded to cobbles and occasional subangular to angular	angular boulders(<u> </u>				AA9239	в	0.50-0.50				
F	600mm maximum diameter)		- <u>·</u> -·-				AA9240	D	0.50-0.50				
-													
-													
			· • · · · · ·				AA9241 AA9242	B D	1.50-1.50 1.50-1.50				
-			<u> </u>					5					
2.0													
				2.50	2.86			_					
-	Stiff grey sandy gravelly CLAY with some sub angular cobbles and occasional subangular to	angular to angular	- <u></u>				AA9243 AA9244	В D	2.50-2.50 2.50-2.50				
ŀ	boulders(5/5mm maximum diameter)		• <u>•</u>										
3.0			<u>-</u>										
F						1							
ŀ				3.60	1.76	Ţ	AA9245	в	3.50-3.50				
-	Obstruction possible boulder or bedrock End of Trial Pit at 3.60m			0.00	1		AA9246	D	3.50-3.50				
				8									
- 4.0 -													
ŀ													
-													
E													
Gro	undwater Conditions				L	I					1		
Surfa	ace water ingressed into trial pit. Slow flow obse	erved at 3.5mbgl.											
Stat	ility Pit unstable from 2.5-3.4mbgl	arran arran (), (10), (20)											
Gen	eral Remarks		. <u> </u>										
Mail	n Head Ordnance Datum used.												
									Fi	gure	TPA 3		
<u>5</u>							. <u>.</u>						

										REPORT NUMBER				
TRIAL PIT RECORD									12239					
CONTRACT Tarbert/Ballylongford Embankment-Pond SI					TRIAL				t no .	TPA4 Sheet 1 of 1				
CO-ORDINATES(_) 101,949.92 E 148,168.93 N				'EL (m)		7.03		DATE STARTED 15/02/2007 DATE COMPLETED 15/02/2007						
CLIENT Shannon LNG ENGINEER Arup Consulting Engineers									EXCAVATION 12t track METHOD					
						(ao		Samples		s	Pa)	ometer		
		Geotechnical Description		Legend	Depth (m)	Elevation (m	Water Strike	Sample Ref	Type	Depth	Vane Test (K	Hand Penetr (KPa)		
0.0	TOPS	TOPSOIL			0.20	0.20 6.83 0.40 6.63								
-	Soft grey sandy SILT with organic fibres			× · · · · · · · · · · · · · · · · · · ·	0.40									
-	Solution			<u>77 77</u> 7 77 7				AA9236	В	0.50-0.50				
1.0	Stiff a	Stiff grey sandy SILT with organic fibres, occasional			1.00	6.03	1							
	suban angula Obstru End o	gular to angular cobbles and occasiona ar boulders(400mm maximum diamete uction possible boulder or bedrock f Trial Pit at 1.30m	I subangular to r)	× ·× ·	1.30	5.73	Ţ	AA9237 AA9238	B D	1.30-1.30 1.30-1.30				
F														
2.0														
3.0														
-											-			
4.0														
-						- - -								
Groundwater Conditions Moderate flow at 1.2mbgl.														
S Stability No instablity noted														
General Remarks														
وَالْحَالَةُ اللَّعَامَةُ اللَّعَامَةُ اللَّعَامَةُ اللَّعَامَةُ اللَّعَامَةُ اللَّعَامَةُ المَّالِي Figure TPA 4														

									1	REPORT NUMBER				
TRIAL PIT RECORD										12239				
CONTRACT Tarbert/Ballylongford Embankment-Pond SI					TRIAL P					TPA5 Shoot 1 of 1				
CO-ORDINATES(_) 101,934.63 E 148,238.98 N GROUND LEV					, <u>, , , , , , , , , , , , , , , , , , </u>	5.51		DATE STARTED 15/02/2007 DATE COMPLETED 15/02/2007						
CLIENT Shannon LNG ENGINEER Arup Consulting Engineers									EXCAVATION 12t track METHOD					
						(ao			S	(Pa)	ometer			
		Geotechnical Description			Depth (m)	Elevation (m	Water Strike	Sample Ref	Type	Depth	Vane Test (K	Hand Penetr (KPa)		
- 0.0 -	TOPSOIL					5.31								
	Firm grey green slightly sandy gravelly CLAY with occasional subrounded to angular cobbles and occasional subrounded to angular cobbles and occasional boulders(300mm maximum diameter)				0.40	5.11	Ť	AA9224 AA9225 AA9226	B D D	0.50-0.50 0.50-0.50 0.50-0.50				
- - - -					1 50	4 01								
2.0	Stiff grey blue sli subrounded to si subrounded to a diameter)	ey blue slightly sandy gravelly CLAY with occasional inded to subangular cobbles and occasional unded to angalar boulders(525mm maximum ter)				4.01		AA9227 AA9228 AA9229	B D D	1.50-1.50 1.50-1.50 1.50-1.50				
								AA9230 AA9231 AA9232	B D D	2.50-2.50 2.50-2.50 2.50-2.50				
	End of Trial Pit	st 3.90m			3.90	1.61		AA9233 AA9234 AA9235	B D D	3.50-3.50 3.50-3.50 3.50-3.50				
- 4.0 - - - - - -														
Groundwater Conditions Moderate flow at 0.8mbgl.														
Stability No instability noted														
R General Remarks Pit terminated due to large boulders. Mailn Head Ordnance Datum used.														
의 같 Figure TPA 5														
co- 0	RDINATES(_) 101,975.49 E 148,215.63 N	GROUND LEV	/EL (m)		6.92		DATE ST	ARTED	Sheet 15/02 ED 15/02	<u>1 of 1</u> 2007 2007				
-------------------------	---	--	---	--------------	-------------	------------	----------------------------	-------------	-------------------------------------	-------------------------------	--			
CLIE	NT Shannon LNG NEER Arup Consulting Engineers						EXCAVA METHOD	TION	12t tra	ick				
					m OD)	Ð		Samples	;	(KPa)				
	Geotechnical Description		Legend	Depth (m)	Elevation (Water Stri	Sample Ref	Type	Depth	Vane Test				
0.0	TOPSOIL		<u>8888</u> 2-822-8											
- - -	Firm grey sandy CLAY with occasional subro angular cobbles	ounded to		0.30	6.62		AA9217 AA9218 AA9219	B D D	0.50-0.50 0.50-0.50 0.50-0.50					
- - - -	Stiff mottled brown blue slightly sandy slightly with organic fibres, occasional subangular to cobbles and occasional subangular to angula 800mm maximum diameter)	y gravelly CLAY angular ar boulders(×0××0 ×0××0 ×0××0 ×0××0	0.90	6.02									
-			0.	2.00	4 92	¥	AA9220 AA9221 AA9222	B D D	1.50-1.50 1.50-1.50 1.50-1.50					
_ 2.0 - - -	Medium dense grey sandy fine to coarse an with occasional lenses of grey clay and som cobbles(Possible weathered rock)	gular GRAVEL e angular	20x 20 20 x 20	2.00	HOL	2	AA9223	В	2 50-2 50					
-				2.00	2.02	*		2						
3.0	Obstruction possible boulder or bedrock End of Trial Pit at 3.00m			3.00	3.92									
- - - - 4.0														
-														
Gro	undwater Conditions		<u> </u>	L										
Slow	v flow observed at 2.0mbgl and moderate flow	observed at 2.7m	ibgl.											
Stat Minc	bility or side wall collapse from 2.5mbgl													

									REPORT NU	MBER	
	T	RIAL PIT F	RECO	RD					122	39	
CON	TRACT Tarbert/Ballylongford Embankment-	Pond SI					TRIAL PI	T NO.	TPA	7	-
co-c	DRDINATES(_) 102,020.45 E 148,236.61 N	GROUND LEV	'EL (m)		12.55		DATE ST	TARTEI OMPLE	D 15/02/ TED 15/02/	1 of 1 2007 2007	
CLIE ENGI	NT Shannon LNG INEER Arup Consulting Engineers	-					EXCAVA METHOD	TION)	12t tra	ick	
					(ao			Sample	is	(Pa)	ometer
	Geotechnical Description		Legend	Depth (m)	Elevation (m	Water Strike	Sample Ref	Type	Depth	Vane Test (k	Hand Penetr (KPa)
0.0	TOPSOIL		<u>8 8 8 9 16</u>	0.20	12.35						
F	Firm redish brown sandy CLAY with rootlets			0.20	12.00						
-	Stiff mottled grey green brown sandy gravelly some subangular to angular cobbles and occa subangular to angular boulders(650mm maxi	CLAY with asional mum diameter)		0.45	12.10		AA9209 AA9210	B D	0.50-0.50 0.50-0.50		
- 1.0 	Stiff grey green slightly sandy gravelly CLAY subangular to angular cobbles and occasiona angular boulders(700mm maximum diameter	with some I subangular to r)		1.90	10.65		AA9211 AA9212	B D	1.50-1.50 1.50-1.50		
- - - - - - 3.0							AA9213 AA9214	B D	2.50-2.50 2.50-2.50		
	End of Trial Pit at 4.00m			4.00	8.55		AA9215 AA9216	B D	3.50-3.50 3.50-3.50		
Gro No C	undwater Conditions Groundwater observed.						_				
Mino	bility or side wall collapse due to boulders from 1.1-2.	.6mbgl									
Gen Mail	neral Remarks In Head Ordnance Datum used.									T	
11 (22)									Fi	gure	TPA 7

					****				1	REPORT NU	MBER	
		T	RIAL PIT F	RECO	RD					122	39	
CON	TRACT	Tarbert/Ballylongford Embankment-	Pond SI					TRIAL PI	T NO.	TPA	3 1 of 1	
co-o	RDINAT	ES(_) 102,068.43 E 148,221.71 N	GROUND LEV	/EL (m)		15.53		DATE SI DATE CO	ARTED	15/02/	2007	
CLIEI ENGI	NT NEER	Shannon LNG Arup Consulting Engineers						EXCAVA METHOD	TION)	12t tra	ick	
					-	(ao			Samples	5	Pa)	ometer
		Geotechnical Description		Legend	Depth (m)	Elevation (m	Water Strike	Sample Ref	Type	Depth	Vane Test (K	Hand Penetr (KPa)
0.0	TOPSC	NL			0.20	45.99			· · · ·			
[Firm re	dish brown sandy CLAY with rootlets			0.20	15.33						
	Stiff mo with so	ttled grey green brown slightly sandy me subangular to angular cobbles and	gravelly CLAY occasional		0.40	10.10		AA9201	в	0.50-0.50		
	subang	ular to angular boulders(550mm max	imum diameter)	·····				AA9202	D	0.50-0.50		
				·							1	
- 1.0				- <u>·</u>								
-				<u>-<u>·</u>····</u>								
-								AA9203	В	1.50-1.50		
					1.00	10.00		775204	U	1.50-1.50		
2.0	Stiff gre	ey green sandy gravelly CLAY with so lar cobbles and occasional subangula	ne subangular r to angular		1.90	13.63						
[boulder	rs(600mm maximum diameter)										1
-				<u> </u>								
								AA9205 AA9206	B D	2.50-2.50 2.50-2.50		
-						1						
3.0												
-				<u> </u>			5					
-								AA9207	в	3 50-3 50		
-								AA9208	Ď	3.50-3.50		
Ē					1 00	11 53						
4.0	End of	Trial Pit at 4.00m			4.00	11.55						
Ļ												
-												
ŀ	ľ											
Gro	Indwater	r Conditions					L		l			<u> </u>
No C	Froundwa	ter observed.										
Stab	ility nstablity r	noted										
Gen	eral Rem	narks										
Mailr	n Head C	ordnance Datum used.										
										. Fi	gure [·]	TPA 8

1								F	REPORT NUI	MBER	
	SL) T	RIAL PIT R	RECOF	RD					122	39	
CONT	RACT Tarbert/Ballylongford Embankment-F	Pond SI					TRIAL P	T NO.	TPA9 Sheet) 1 of 1	
co-o	RDINATES(_) 101,869.55 E 148,018.41 N	GROUND LEV	EL (m)		16.63		DATE ST	ARTED	19/04/2 TED 19/04/2	2007 2007 2007	
CLIE! ENGII	NT Shannon LNG NEER Arup Consulting Engineers						EXCAVA METHOD		14t Tra	ack	
					(ao			Samples	\$	Pa)	ometer
	Geotechnical Description		Legend	Depth (m)	Elevation (m	Water Strike	Sample Ref	Type	Depth	Vane Test (K	Hand Penetr (KPa)
0.0	Brown clay loam TOPSOIL		<u>23</u> 2								
-	Firm' friable orange brown with grey mottling s gravelly CLAY with some (c. 10%) subangular	sandy slightly r sandstone		0.30	16.33		AA8579	D	0.30-0.40		
	subrounded of sandstone and siltstone. Assessed as very compact grey brown very di- sandy fine to coarse subangular and subround	ayey very ded sandstone		0.60	16.03		AA8580	В	0.70-0.90		
- 1.0 -	and siltstone GRAVEL locally grading to friable gravelly clay with some (c. 20%) angular and sandstone cobbles and occasional subangula	e sandy very subangular r boulders					AA8581	D	1.00-1.10		
-	(<0.60m). Stiff fissured and friable brown with grey mott slightly gravelly CLAY with some (c. 5%-10% sandstone cobbles. Gravel is fine to coarse s	ling sandy) subangular subangular and		1.30	15.33		AA8582	В	1.40-1.50		
- 2.0	subrounded of sandstone and siltstone. Stiff fissured brown sandy slightly gravelly CL (c. 5%-10%) subangular sandstone cobbles a boulders (<0.50m). Gravel is fine to coarse s subrounded of sandstone and siltstone.	AY with some and occasional subangular and		1.80	14.83		AA8583	D	1.90-2.00		
-				270	13.93	₹ Ţ	AA8584	В	2.40-2.50		
- - - - 3.0 -	Very stiff fissured bluish grey sandy slightly g with some (c. 10%) subangular sandstone co occasional boulders (<0.40m). Gravel is fine subangular and subrounded of sandstone an	ravelly CLAY obbles and to coarse d siltstone.		-			AA8585	D	2.80-2.90		
			01.01.00.00 01.00.00 01.00.00				AA8586	В	3.40-3.50		
- - -	End of Trial Pit at 4.00m	had	0	4.00	12.63		AA8587	D	3.90-4.00		-
-											
COLLINE	undwater Conditions page below 2.40m bgl.										
09 SO Reli	bility atively stable					<u></u>					
9.62 Gei	neral Remarks	4 00 11 1	- 11							. <u></u>	
Orie	entation East-West. Dimensions 1.70m x 4.30n	n x 4.00m. Mail	n Head (Jronance	e Datum U	seu.					
GSL									Fi	gure	TPA 9

1									REPORT NU	MBER	
	·sl)	TRIAL PIT F	RECO	RD					122	:39	
CON	TRACT Tarbert/Ballylongford Embankment	-Pond Si					TRIAL PI	T NO.	TPA	10	C2
co-0	DRDINATES(_) 101,936.73 E 148,094.65 N	GROUND LEV	/EL (m)		12.88		DATE SI	ARTE	Sheet D 18/04/ TED 18/04/	<u>1 of 1</u> 2007 /2007	
CLIEI Engi	NT Shannon LNG NEER Arup Consulting Engineers						EXCAVA METHOD	TION	14t Tn	ack	
					â			Sample	s	a)	meter
	Geotechnical Description		Legend	Depth (m)	Elevation (m (Water Strike	Sample Ref	Type	Depth	Vane Test (KF	Hand Penetro (KPa)
0.0	Brown clay loam TOPSOIL						AA8558	D	0.30-0.40		
	Firm friable orange brown sandy CLAY with gravel.	occasional	<u></u>	0.65	12.23		AA8559	в	0.85-0.95		
1.0	Stiff friable brown, grey and reddish brown r very sandy slightly gravelly CLAY locally grav clayey sand and gravel with some locally ma subangular sandstone cobbles and occasion boulders (<0,70m). Gravel is fine to coarse	nottled sandy to ding to very iny (c. 20%) al angular subangular and	01.01.01	0.95	11.93		AA8560	В	1.20-1.40		
2.0	subrounded of sandstone and siltstone.	J					AA8561	D	1.90-2.00		
						1	AA8562	В	2.40-2.50		
3.0	Assessed as compact to very compact dark clayey very sandy fine to coarse subangular sandstone and siltstone GRAVEL with some 20%-30%) subangular and subrounded sar	brown very and subrounded locally many (c. idstone cobbles	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.80	10.08	¥	AA8563	D	2.90-3.00		
	and occasional boulders (<0.60m).						AA8564	В	3.30-3.40		
-4.0	End of Trial Pit at 4.00m		0 <u>0</u> 000	4.00	8.88		AA8565	D	3.90-4.00	-	
Gro	undwater Conditions										
Dam	np below 2.80m bgl.										
Stal Rela	bility atively stable										
Gen Orie	neral Remarks Intation North-South. Dimensions 1.70m x 4.0	0m x 4.00m. Ma	ailn Head	Ordnand	æ Datum	used.			. —•		
									۲ıç	jure 1	PA 1

REPORT NU										MBER	
	T SL	RIAL PIT R	ECO	RD					122	239	
CON	TRACT Tarbert/Ballylongford Embankment-	Pond SI					TRIAL PI	T NO.	TPA	11	
co-(DRDINATES(_) 102,002.84 E 148,169.69 N	GROUND LEVE	EL (m)		8.13		DATE ST	ARTE	D 17/04 TED 17/04	/2007 /2007	
CLIE ENGI	NT Shannon LNG NEER Arup Consulting Engineers						EXCAVA METHOD	TION	14t Tr	ack	
					(ao			Sample	s	Pa)	ometer
	Geotechnical Description		Legend	Depth (m)	Elevation (m	Water Strike	Sample Ref	Type	Depth	Vane Test (K	Hand Penetr (KPa)
0.0	Brown clay loam TOPSOIL		8-8-8-14 1-8-14 - 8								
	Firm friable orange brown sandy slightly grave some (c. 10%) angular to subrounded sandsto and occasional boulders (<0.40m). Gravel is	в	0.40-0.65		-						
- - - 1.0	Highly weathered fractured thinly bedded moc grey with red and dark grey staining SILTSTO Recovered medium and coarse angular GRA	В	0.85-0.90								
	COBBLES. Possible SILTSTONE bedrock End of Trial Pit at 1.15m										
2.0											
-											
-				2							
3.0											
4.0											
Gro No g	undwater Conditions roundwater encountered during excavation.				·	La na noma a su	.1	L	····· I	L	
	ility										
Rela	tively stable										
Gen Orie	eral Remarks ntation East-West. Dug perpendicular to slope.	Dimensions 1.70)m x 3.5	0m x 1.1	5m. Mai	In Head	i Ordnance	Datum	used.		
									Fig	gure T	PA 11

1									REPORT NU	MBER	
	J.S.L	TRIAL PIT I	RECO	RD					122	:39	
CON	TRACT Tarbert/Ballylongford Embankme	ent-Pond SI					TRIAL PI	T NO.	TPA	12	
co-o	DRDINATES(_) 102,068.94 E 148,244.72 N	GROUND LEV	/EL (m)		13.96		DATE ST	TARTED	Sneet 18/04/ TED 18/04/	1 of 1 2007 /2007	
	INT Shannon LNG						EXCAVA METHOD	TION	14t Tr	ack	
		I			6			Samples	5		eter
	Geotechnical Descriptior	I			u (m O⊡	Strike				est (KPa	enetrom
			Legend	Depth (m)	Elevatic	Water S	Sample Ref	Type	Depth	Vane T	Hand P (KPa)
_ 0.0 _	Brown clay loarn TOPSOIL	л. — — — — — — — — — — — — — — — — — — —	12 14 14 14 14 14 14 14								
-	Firm friable orange brown sandy slightly gr CLAY with some sandstone cobbles. Grav	avelly to gravelly vel is fine to		0.35 0.55	13.61 13.41		AA8534	D	0.35-0.55		
	Coarse angular and subangular of sandsto Stiff to very stiff fissured and slightly friable and red brown mottled sandy slightly grave grading to very clavev sand and gravel with	ne and siltstone. ight grey brown iy CLAY locally some (c. 10%)	10,10 0,0				AA8535	В	0.70-0.80		
- 1.0 -	subangular and subrounded sandstone co occasional boulders (<0.50m). Gravel is fi angular to subrounded of sandstone and s	bbles and ne to coarse iltstone. Below c.				AA8536	D	1.00-1.10			
-	brown and reddish brown. Below c. 1.50m bg brown and reddish brown. Below c. 2.00n of mottling, less fissured.	n bgl brown, loss					AA8537	в	1.50-1.60		
- - 2.0							AA8538	D	1.90-2.00		
			51-0-0-10-10-10-10-10-10-10-10-10-10-10-1				AA8539	В	2.40-2.50		
- - - - 3.0	Very stiff hard fissured grey brown sandy so CLAY with some (c. 10%) subangular san Gravel is fine to coarse subangular and su sandstone and siltstone.	slightly gravelly dstone cobbles. brounded of	01.01.00.1000	2.70	11.26		AA8540	D	2.90-3.00		
-			0, 0, 0, 0 0, 0, 0				AA8541	В	3.60-3.70		
	Stiff friable brown sandy to very sandy slig CLAY with occasional subangular sandstr	ghtly gravelly one. Gravel is fine	0.00	3.90	10.06						
-	to coarse subangular and subrounded of s siltstone. End of Trial Pit at 4.20m	andstone and		4.20	9.76		AA8542	D	4.10-4.20		
-											
International In	undwater Conditions groundwater encountered during excavation.		<u>. I</u>	<u>L</u>		1	«J	<u>I</u>			.I
Rela	bility atively stable										
Gen Orie	neral Remarks entation North-South. Dimensions 1.70m x 4	.20m x 4.20m. Mai	iin Head (Ordnanc	e Datum u	used.					
GSL TP LO				-					Fiç	jure T	PA 12
6											

									I	REPORT NUM	IBER	
		т	RIAL PIT F	RECOI	RD					122	39	
CONT	TRACT	Tarbert/Ballylongford Embankment-	Pond SI					TRIAL PI	T NO.	TPA1	3 1 of 1	
co-0	RDINA	T ES(_) 101,938.29 E 148,021.16 N	GROUND LEV	/EL (m)		16.67		DATE ST	ARTED) 18/04/2 TED 18/04/2	2007 2007	
CLIEI ENGII	nt Neer	Shannon LNG Arup Consulting Engineers						EXCAVA METHOD	TION	14t Tra	ick	
						(ao			Sample	s	Pa)	ometer
		Geotechnical Description		Legend	Depth (m)	Elevation (m	Water Strike	Sample Ref	Type	Depth	Vane Test (K	Hand Penetro (KPa)
0.0	Brown	clay loam TOPSOIL		<u> </u>								
	Firm to red br some/ occasi suban	o stiff fissured and friable light grey, gre own mottled sandy slightly gravelly CLA many (c. 20%) angular sandstone cobb ional boulders (<0.40m). Gravel is fine gular and subrounded of sandstone an	ey brown and Y with bles and to coarse d siltstone.	0-0-10-10-10-10-10-10-10-10-10-10-10-10-	0.35	16.32		AA8550	в	0.50-0.70		
1.0	Below	c. 1.00m bgi stiff to very stiff.		0 				AA8551	D	1.00-1.10		
	Very s locally and o suban Below	stiff fissured brown sandy slightly grave many (c. 10%-20%) subangular sands ccasional boulders (<0.40m). Gravel is gular and subrounded of sandstone an (c. 2.00m stiff.	Ily CLAY some stone cobbles is fine to coarse ad siltstone.		1.30	15.37		AA8552	В	1.40-1.50		
2.0							Ţ	AA8553	D	1.98-2.00		
								AA8554	В	2.40-2.50		
3.0	Very	stiff fissured bluish grey sandy slightly (graveliy CLAY		3.10	13.57		AA8555	D	3.00-3.10		
	with s occas subar	come (c. 10%) subangular sandstone c sional boulders (<0.40m). Gravel is find ngular and subrounded of sandstone a	obbles and e to coarse nd siltstone.					AA8556	В	3.30-3.40		
4.0	End	of Trial Pit at 4.00m			4.00	12.67		AA8557	D	3.90-4.00		
-												
- 13/11/12	bundwa te pages fi	ter Conditions rom fissures below c. 2.00m bgl.			<u> </u>	<u> </u>			.1		<u>I</u>	<u> </u>
19.1SDI Reli	ibility atively s	table		h								
Gei Gei Orie	neral Re entation	emarks North-South. Dimensions 1.70m x 4.7	'0m x 4.00m. M	lailn Heac	l Ordnan	ce Datum	used.					TDA 40
IGSL T									,	FI	gure	TPA 13

	~	nn 1999							F	REPORT NU	MBER	
		т	RIAL PIT F	RECO	RD					122	39	
CON	TRACT	Tarbert/Ballylongford Embankment-	Pond SI					TRIAL P	T NO.	TPA1 Sheet	14 1 of 1	
co-c	RDINA	TES(_) 102,004.85 E 148,096.45 N	GROUND LEV	'EL (m)		14.78		DATE ST	ARTED	18/04/ ED 18/04/	2007	
CLIE ENGI	NT NEER	Shannon LNG Arup Consulting Engineers						EXCAVA METHOD		14t Tr	ack	
						(ao			Samples		Pa)	ometer
		Geotechnical Description		Legend	Depth (m)	Elevation (m	Water Strike	Sample Ref	Type	Depth	Vane Test (K	Hand Penetr (KPa)
0.0 -	Brown	I clay loam TOPSOIL										
	Firm fi some is fine and si	table orange brown sandy slightly grave (c. 10%-20%) subangular sandstone co to coarse subangular and subrounded ltstone.	elly CLAY with bbles. Gravel of sandstone	0.14	0.30	14.48 14.18		AA8566	В	0.40-0.60		
- - - - -	sandy sand a cobble coarse siltsto	slightly gravelly CLAY locally grading to and gravel with some (c. 10%) subangu es and occasional boulders (<0.50m). G e subangular and subrounded of sandst ne. Between 0.60m and 1.50m bgl, Ve und reddish brown motified	very clayey lar sandstone iravel is fine to one and ry stiff light GRAVEL from	0-101-01-0				AA8567	В	1.00-1.10		
	3.90m	and readish brown motiled. Decoming a 1.		0.01 0.01 0.01 0.01				AA8568	D	1.50-1.70		
- 2.0 -				0 0 0				AA8569	В	1.90-2.00		
				01 010				AA8570	D	2.40-2.50		
							1 ⊥	AA8571	В	2.80-2.90		
								AA8572	D	3.40-3.50		
	End o	of Trial Pit at 4.00m			4.00	10.78		AA8573	В	3.90-4.00		
-												
-												
LOVEL LOS	undwat np below	er Conditions v 3.00m bgl.	, , , , , , , , , , , , , , , , , , ,			_						
	bility atively st	able						<u>, , , , , , , , , , , , , , , , , , , </u>				
Ger Orie	eral Re	marks North-South. Dug at top of slope. Dime	ensions 1.70m x	: 4.80m x	4.00m.	Mailn He	ad Ordi	nance Datu	m used.			
GSL TP LO										Fig	gure T	PA 14

\square	1		 							REPORT NU	MBER	
		Т	RIAL PIT F	RECO	RD					122	239	
CON	IRACT	Tarbert/Ballylongford Embankment-	Pond SI					TRIAL P	T NO.	TPA	15 1 of 1	
co-c	RDINA	TES(_) 102,070.96 E 148,171.48 N	GROUND LEV	/EL (m)		16.76		DATE ST	ARTED	17/04	/2007 /2007	
	nt Neer	Shannon LNG Arup Consulting Engineers						EXCAVA METHO	TION)	14t Tr	ack	
						(ao			Sample	s	Pa)	ometer
		Geotechnical Description		Legend	Depth (m)	Elevation (m	Water Strike	Sample Ref	Type	Depth	Vane Test (K	Hand Penetr (KPa)
0.0	Brown	clay loam TOPSOIL										
	Firm fr occasi suban Stiff fis slightly	iable orange brown sandy slightly grave ional rootlets. Gravel is fine to coarse a gular of sandstone and siltstone. ssured and friable brown sandy locally v / gravelly CLAY wth some (c. 10%) sub	elly CLAY with ngular and ery sandy angular	0.1011.0	0.30 0.50	16.46 16.26		AA8518 AA8519	D B	0.30-0.50 0.50-0.70		
- - 1.0 -	sands Locally Grave sands light g	tone cobbles and occasional boulders (y intermixed with very clayey/very silty sa l is fine to coarse angular and subangul tone and siltstone. Between 0.50m and rey brown locally very stiff (desiccated).	<1.0m). and and gravel. ar of i 1.50m bgl					AA8520	D	1.00-1.10		
				0 0 0 0 0				AA8521	В	1.40-1.50		
2.0								AA8522	D	2.00-2.10		
								AA8523	В	2.40-2.50		
3.0								AA8524	D	2.90-3.00		
				0 00 100 0				AA8525	В	3.40-3.50		
4.0	End o	of Trial Pit at 4.20m			4.20	12.56		AA8526	D	4.00-4.20		
-												
Gro No g	undwate proundwa	er Conditions ater encountered during excavation.		L			I	<u>.</u>	I <u></u> ,		I,	1
13												
Rela	bility Itively sta	able	и и <u>,</u>									
Gen Orie	eral Rentation N	marks North-South. Dimensions 1.70m x 5.00	m x 4.20m. Ma	iln Head	Ordnand	æ Datum	used.					
IGSL IP LO		·								Fig	ure T	PA 15

1										REPORT NU	MBER	
		1	RIAL PIT I	RECO	RD					122	239	
CON	TRACT	Tarbert/Ballylongford Embankment-	Pond SI					TRIAL PI	T NO.	TPA Sheet	16	
co-o	RDINA	T ES(_) 101,993.24 E 148,008.86 N	GROUND LEV	/EL (m)		16.85		DATE ST	TARTE	D 18/04	/2007 /2007	
CLIE	NT NEER	Shannon LNG Arup Consulting Engineers	-					EXCAVA METHO	TION	14t Tr	ack	
			- I			â			Sample	s	(E	heter
		Geotechnical Description		Legend	Depth (m)	Elevation (m O	Water Strike	Sample Ref	Type	Depth	Vane Test (KP	Hand Penetrom (KPa)
0.0	Brown	clay loam TOPSOIL		<u>8.8 8.4</u> 17.84 8								
	Assess	ed as compact reddish brown very day	vev SAND and	12:30	0.40	16.45		AA8545	В	0.25-1.50		
	GRAV 20%) s boulde	EL with some (c. 10%-15%) locally so subangular sandstone cobbles and with rs (<0.40m). Gravel is fine to coarse s	me/many (c. noccasional subangular and	0-0-0				AA8543	В	0.50-0.60		
1.0	subrou very sa Stiff fis	nded of sandstone and siltstone. Loca andy gravelly clay and very silty very sa sured light grey, grey brown and reddi	ally grading to ndy gravel. sh brown	0.00	1.00	15.85		AA8544	D	1.00-1.10		
-	Monte	I sandy slightly gravelly CLAY.										
L L	Very stiff fissured and friable brown sandy slightly gravelly CLAY with some (c. 10%) subangular sandstone cobbles and occasional boulders (<0.40m). Gravel is fine to coarse subangular and subrounded of sandstone and siltstone. Below c. 2.00m bgl stiff to very stiff.											
2.0								AA8546	D	1.90-2.00		
				0.101.00				AA8547	В	2.30-2.40		
- - - 3.0	Stiff fo		Vhorester		3.10	13.75		AA8548	D	3.00-3.10		
-	SAND sands Grave sands	and GRAVEL with some/many (c. 20% one cobbles and occasional boulders (is fine to coarse subangular and subro one and siltstone.	(<0.80m). bunded of				Ţ	AA8549	В	3.40-3.60		
- - - 4.0	Obstru End of	iction. Trial Pit at 3.90m			3.90	12.95						
- - - - -												
Grou Seep	undwate bage bek	r Conditions ow 3.50m.					<u> </u>		<u> </u>			<u> </u>
Stab	oility											
Relat	tively sta	ble										
Orier	eral Ren Intation N	n arks orth-South. Dimensions 1.70m x 5.50	m x 3.90m. Pit t	erminated	d at 3.90	m bgl, bo	ulder.	Mailn Head	Ordnar	nce Datum us	sed.	
										Fig	jure T	PA 16

											1	REPORT N	UMBER	
10				т	RIAL PIT F	RECO	RD					12	239	
CONT	RACT	Tarbei	t/Ballylongford I	Embankment-l	Pond SI						it no.		17	
co-o	RDINA	TES(_)	102,060.42 E 148,085.10 N		GROUND LEV	'EL (m)		10.07		DATE S	TARTED OMPLET	19/04 TED 19/04	4/2007 4/2007	
CLIEN ENGII	NT NEER	Shanr Arup C	on LNG Consulting Engine	eers						EXCAV/ METHO	ATION D	14t T	rack	
								â			Samples	S	Pa)	ometer
			Geotechnical	Description		Legend	Depth (m)	Elevation (m (Water Strike	Sample Ref	Type	Depth	Vane Test (KI	Hand Penetrc (KPa)
0.0	Brown	clay loan	TOPSOIL		L	8 8 8 4 1/ - 84 - 8								
	Moder strong End of	ately wea light grey f Trial Pit a	thered fractured with dark grey : at 0.50m	thinly bedded staining SILTS	moderately TONE.	× × × ×	0.35 0.50	9.72 9.57						
- - - -														
2.0														
									1					
-														
3.0														
F														
4.0								e e						
-														
-														
Groi No g	undwat Iroundw	er Condi ater enco	t ions untered during e	excavation.										
Ido Tse Stat	oility													<u> </u>
Rela	tively st	able												
Gen Orie	eral Rentation	marks North-Sou	ith. Dug at toe o	of slope. Dime	ensions 1.70m x	: 3.70m x	0.50m.	No samp	les take	n. Mailn He	ead Ordr	nance Datu	m used.	
IGSL TP												Fig	jure TF	PA 17

									REPORT NU	MBER				
	т) ->	RIAL PIT F	RECO	RD					122	39				
ONTRAC	CT Tarbert/Ballylongford Embankment-F	Pond SI					TRIAL PI	T NO.	TPA [*]	18				
:0-ORDII	NATES(_) 102,056.24 E 148,003.27 N	GROUND LEV	/EL (m)		16.32		DATE ST	ARTE	D 19/04/ TED 19/04/	2007 2007				
CLIENT ENGINEEI	Shannon LNG R Arup Consulting Engineers						EXCAVA METHOD	TION)	14t Tr	ack				
					(ao			Sample	s	(Pa)	ometer			
	Geotechnical Description		Legend	Depth (m)	Elevation (m	Water Strike	Sample Ref	Type	Depth	Vane Test (h	Hand Penetr (KPa)			
^{0.0} Brc	own day loam TOPSOIL			0.45	15.87	· · · · · · · · · · · · · · · · · · ·	AA8574	D	0.30-0.40					
Fin slig sar Gra	m fissured and friable light grey and reddisi ghtly gravelly CLAY with some angular and ndstone cobbles and occasional/some boul avel is fine to coarse subangular and subro ndstone and silistone	h brown sandy subangular ders (<1.0m). unded of	01 01 00 100	0.45	10.07		AA8575 AA8576	B U	0.60-0.70 0.70-1.15					
1.0 Push-in U100 - 80% recovery. Image: Constraint of the second se														
CLAY. wany angular and subangular sitistone cooples and some sitistone boulders (<0.50m). Gravel is fine to coarse angular and subangular of sitistone.														
angular and sublangular of sublang														
3.0														
4.0 - -														
Ground	water Conditions e at 1.50m bgl.													
Stability Relativel	y ly stable													
General Orientati	I Remarks ion East-West. Rockhead variable 1.40m	- 1.70m bgl. Dir	mensions	1.70m x	4.60m x	1.70m.	Mailn Hea	ad Ordr	ance Datum	used.				
									Figu	re TF	'A 18			

		nor						<u> </u>	F	REPORT NU	MBER				
		т	RIAL PIT F	RECO	RD					122	39				
СОМ	TRACT	Tarbert/Ballylongford Embankment-	Pond SI					TRIAL PI	T NO.	TPA1	19 1 of 1				
co-0	RDINA	TES(_) 102,122.35 E 148,078.30 N	GROUND LEV	'EL (m)		15.32		DATE ST	ARTED	0 17/04/ TED 17/04/	2007				
CLIEI ENGI	NT NEER	Shannon LNG Arup Consulting Engineers						EXCAVA METHOD	TION)	14t Tr	ack				
				-		â			Samples	s	(Pa)	ometer			
		Geotechnical Description		Legend	Depth (m)	Elevation (m	Water Strike	Sample Ref	Type	Depth	Vane Test (K	Hand Penetr (KPa)			
0.0 - -	Browr	n day loam TOPSOIL			0.30	15.02									
-	Stiff fi browr subar angul	ssured slightly friable orange brown and mottled sandy slightly gravelly CLAY w igular sandstone cobbles. Gravel is fine ar and subangular of sandstone and silt	I light grey ith occasional to coarse stone.	0 0 0 0 0 0	0.70	14.62		AA8529 AA8530	B U	0.40-0.50 0.50-0.95					
- - - 1.0	Stiff to very stiff fissured light bluish grey and orange brown motiled sandy slightly gravelly CLAY with occasional/some (5%-10%) subangular and subrounded sandstone cobbles and occasional boulders (<0.60m). Gravel is fine to coarse subangular and subrounded of sandstone and siltstone.														
	Subangular and subrounded of sandstone and siltstone. Image: Compact dark brown very clayes/very silty SAND and GRAVEL locally grading to firm fissured and friable sandy to very sandy slightly gravelly CLAY with some/many (c. 20%) angular siltstone cobbles Image: Compact dark brown very clayes/very silty SAND and GRAVEL locally grading to firm fissured and friable sandy to very sandy slightly gravelly clayes/very silty SAND and GRAVEL locally grading to firm fissured and friable sandy to very sandy slightly gravelly clayes/very silty some/many (c. 20%) angular siltstone cobbles Image: Compact dark brown very clayes/very silty some/many (c. 20%) angular siltstone cobbles Image: Clayes/very silty some/many (c. 20%) angular siltstone cobbles Image: Clayes/very silty some/many (c. 20%) angular siltstone cobbles Image: Clayes/very silty some/many (c. 20%) angular siltstone cobbles Image: Clayes/very silty some/many (c. 20%) angular siltstone cobbles Image: Clayes/very silty some/many (c. 20%) angular siltstone cobbles Image: Clayes/very silty some/many (c. 20%) angular siltstone cobbles Image: Clayes/very silty some/many (c. 20%) angular siltstone cobbles Image: Clayes/very silty some/many (c. 20%) angular siltstone cobbles Image: Clayes/very silty some/many (c. 20%) angular siltstone cobbles Image: Clayes/very silty some/many (c. 20%) angular siltstone cobbles Image: Clayes/very silty some/many (c. 20%) angular siltstone cobbles Image: Clayes/very silty some/many (c. 20%) angular siltstone cobbles Image: Clayes/very some/many (c. 20%) angular siltstone cobbles Image: Clayes/very some/many (c. 20%) angular some/many (c. 20%) angu														
	clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm fissured and friable sandy to very sandy slightly gravelly Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm CLAY with some/many (c. 20%) angular siltstone cobbles Image: Clayey/very silty SAND and Sandstone cobbles Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locally grading to firm Image: Clayey/very silty SAND and GRAVEL locallocalog Image: Clayey/very silty														
2.0 - -	2.0 silstone. 2.0 silstone. Weathered fractured light grey SILTSTONE. Bedrock at 1.55m bgl in West Face. End of Trial Pit at 2.00m														
	End of Trial Pit at 2.00m														
3.0															
										, , ,					
- 4.0						-									
-															
Joint Line 1	oundwa np belov	ter Conditions w 1.40m bgl.		1	1	1	L		<u> </u>	<u></u>	<u>I</u>	_L			
Sta	bility atively s	table		<u>_ i (,</u> , , , , , , , , , , , , , , , , , ,											
	neral P	emarks													
	entation	North-South. Dug across slight slope.	Dimensions 1.70	0m x 3.70)m x 2.00)m. Mail	n Head	Ordnance	Datum u	used.	ure TI	DA 10			
IGSL										гıg		7 19			

TRIAL PIT RECORD 12239 CONTRACT Tather/Ballylongford Embankment-Pond SI TRAL, PIT NO. TPA20 CONTRACT Tather/Ballylongford Embankment-Pond SI TATAL PIT NO. TPA20 CONTRACT Tather/Ballylongford Embankment-Pond SI Tother State of Colspan="2">Tother State of Colspan="2"	ER	UMBER	EPORT NU	RE	······································										
CONTRACT TarbertBallylongford Embankment-Pond SI TRAL PT NO. TPA20 SHEET Sheet 1 of 1 CO-ORDINATES(_) 102.135.49 E 180.017.00 N Id.30 DATE COMPLETED 1904/2007 CLIENT Shannon LNG Brown Carl Consulting Engineers Id.30 DATE COMPLETED 1904/2007 Correction of the Consulting Engineers Geodechnical Description Id.30 Id.30 Id.06 Id.30 Id.06 0 Brown day loam TOPSOIL Id.30 Id.06 Id.30 Id.06 Id.30 Id.06 0 Brown day loam TOPSOIL Id.30 Id.06 Id.30 Id.06 Id.30 Id.06 0 Brown day loam TOPSOIL Id.30 Id.06 Id.30 Id.06 Id.30 Id.06 0 Brown day loam TOPSOIL Id.30 Id.06 Id.30 Id.06 Id.06 0 Brown day loam TOPSOIL Id.30 Id.06 Id.30 Id.06 Id.06 0 Brown day loam TOPSOIL Id.30 Id.06 Id.06 Id.06 Id.06 Id.06 0 Brown day loam TOPSOIL Id.00 Id.06 Id.06 Id.06 Id.06 Id.06 0 Brown day compared fight gray and brown mothed way ally gray alling and brown mothed way ally gray	9	239	122					RD	RECO		20				
Sheet in the sheet of the sh		20	TPA	T NO.	TRIAL PIT N					RACT Tarbert/Ballylongford Embankment-Pond SI	CONT				
CLIENT Shamono LNG ENGINEER Aup Consulting Engineers Geotechnical Description	r1)7	4/2007	Snee 19/04	ARTED	DATE STAF		14.36		/EL (m)	RDINATES() 102 135 49 F GROUND LEV	<u> </u>				
CLUENT Shamon LNG EXCAVATON 141 Track Aup Consulting Engineers Geotechnical Description Image: Consulting Engineers Samples Image: Consulting Engineers Samples Image: Consulting Engineers Image: Co)7	4/2007	D 19/04	OMPLETE	DATE COM					148,017.00 N					
Geotechnical Description Samples 00 good		'rack	14t T	TION)	EXCAVATIO METHOD					IT Shannon LNG IEER Arup Consulting Engineers	CLIEN ENGIN				
Geotechnical Description Environment light grey and brown motified way sitily and an analysis of the context environment light grey and brown motified way sitily and an analysis of the context environment light grey and brown motified way sitily and an analysis of the context environment light grey and brown motified with very sitily and an analysis of the context environment light grey and brown motified way site of the context environment light grey and brown motified with very sitily and an analysis of the context environment light grey and brown motified with very site of the context environment light grey and brown motified with very site of the context environment light grey and brown motified with very site of the context environment light grey and brown motified with very site of the context environment light grey and brown motified with very site of the context environment light grey and brown grewaly clay. 0.30 14.06 10 Moderately weathered fractured thinky beckded moderately strong light grey and grewally clay. 0.30 14.06 13.36 20 20 1.00 13.36 1 1 30 Moderately weathered fractured thinky beckded moderately strong light grey strong grewaly clay. 1 1 40 Indicately weathered fractured thinky beckded moderately strong light grey strong grewaly clay. 1 1 30 Indicately weathered fractured thinky beckded moderately strong light grey strong grewaly clay. 1 1 1 30 Indicate grey strong grewaly clay. Indicate grey strong grewaly clay. 1 1 1 30	a, meter	Pa)		Samples	Sa		â								
20 Brown clay loam TOPSOIL 0.30 14.06 Assessed as compact light grey and brown motified very silty exacts of a gray and the to coarse angular and subangular sandstone of a gray and the to coarse angular boulders of boulders (<1.07).	Hand Penetro (KPa)	Vane Test (KI	Depth	Type	Sample Ref	Water Strike	Elevation (m (Depth (m)	Legend	Geotechnical Description					
Assessed as compact light grey and brown motified very sitty very sandy fine to coarse angular and subangular sandstone of the coarse angular builders of builders (<10m). Below 0.85m bgl intermised with very sitty firety sandy interesting with many angular sistence cobies. 1.0 Below 0.85m bgl intermised with very sitty firety sandy interesting the coarse angular builders of builders (<10m). Below 0.85m bgl intermised with very sitt grey sandy interesting the coarse angular builders of builders (<10m). Below 0.85m bgl intermised with very sitt grey sandy interesting the coarse angular builders of builders (<10m). Below 0.85m bgl intermised with very sitt grey sandy interesting the coarse angular builders of builders (<10m). Below 0.85m bgl intermised with very sitt grey sandy interacting sitts and grey staining SL TSTONE with fracture infilling of grey sandy gravelity day. 1.0 13.36 1.00 1										Brown clay loam TOPSOIL	0.0				
and situs of coarse angular backgroup 2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,							14.06	0.30	0x0 0	Assessed as compact light grey and brown mottled very silty	$\begin{bmatrix} \\ \\ \\ \end{bmatrix}$				
10 Moderately weathered fractured thinly bedded moderately strong light grey with drak grey staning SILTSTONE with fracture infilling of grey sandy gravely clay. 1.00 13.36 2.0 2.0 1.00 13.36 3.0 2.0 1.00 13.36 3.0 2.0 1.00 13.36 3.0 2.0 1.00 13.36 3.0 2.0 1.00 1.00 3.0 2.0 1.00 1.00 3.0 2.0 1.00 1.00 3.0 2.0 1.00 1.00 3.0 2.0 1.00 1.00 1.00 3.0 2.0 1.00 1.00 1.00 3.0 2.0 1.00 1.00 1.00 3.0 1.00 1.00 1.00 1.00 3.0 1.00 1.00 1.00 1.00 4.0 1.00 1.00 1.00 1.00 5 5 5 5 1.00 5 5 5 5 5 6 5 5 5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>₹ L</td><td></td><td></td><td></td><td>very sandy fine to coarse angular and subangular sandstone and siltstone GRAVEL with some (c. 10%) angular siltstone cobbles and some angular boulders of boulders (<1.0m). Below 0.85m bgl intermixed with very stiff grey sandy slightly gravelly clay with many angular silstone cobbles.</td><td></td></td<>						₹ L				very sandy fine to coarse angular and subangular sandstone and siltstone GRAVEL with some (c. 10%) angular siltstone cobbles and some angular boulders of boulders (<1.0m). Below 0.85m bgl intermixed with very stiff grey sandy slightly gravelly clay with many angular silstone cobbles.					
2.0 3.0 3.0 1 4.0 1 Groundwater Conditions Seepage below 0.80m bgl.	1.0 Moderately weathered fractured thinly bedded moderately strong light grey with drak grey staining SILTSTONE with fracture infilling of grey sandy gravelly clay. End of Trial Pit at 1.00m 1.00 13.36														
3.0											2.0				
4.0 4.0 Groundwater Conditions Seepage below 0.80m bgl.											- - - 3.0 -				
Groundwater Conditions Seepage below 0.80m bgl.											- - - - - - - - - - -				
Groundwater Conditions Seepage below 0.80m bgl.															
Seepage below 0.80m bgl.	l	<u> </u>	<u> </u>	1						Indwater Conditions	Grou				
										age below 0.80m bgl.	Seep				
Stability Relatively stable					54-15					ility ively stable	Stab Relat				
5 General Remarks Oriontation North South Dug on flat around adjacent to stream Dimensions 4.70m x 3.40m x 4.00m. No semples taken Main Head Ord	rdnance		Maile Hee	oe takon I	No semplos	1.00m	v 3 10m v	1 70m	imension	eral Remarks	Gene				
	TPA 20	jure T	Fig	UU LANGH.			. 0. IUHI X	, i.ronii	anonoion R	mused.					

65	D								RI	EPORT NU	JMBER				
	SL	Т	RIAL PIT F	RECO	RD					122	239				
CONT	RACT	Tarbert/Ballylongford Embankment-	Pond SI						T NO.	TPA	DD1				
CO-0	rdina	TES(_) 102,039.00 E 147,879.00 N	GROUND LEV	ÆL (m)		21.20		DATE ST	ARTED	19/04 19/04	1/2007 1/2007				
CLIEN ENGIN	NT NEER	Shannon LNG Arup Consulting Engineers						EXCAVA METHO	TION	14t T	rack				
						(ac			Samples		a)	meter			
		Geotechnical Description		Legend	Depth (m)	Elevation (m (Water Strike	Sample Ref	Type	Depth	Vane Test (Kł	Hand Penetro (KPa)			
0.0	Browr	n clay loam TOPSOIL	<u> </u>												
	Firm'	friable orange brown sandy slightly grav	elly CLAY with		0.30	20.90									
	occas coars	ional subangular sandstone cobbles. G e subangular and subrounded of sandstone	ravel is tine to one and		0.50	20.70									
- - - - - 1.0	Suitstorie. Very stiff fissured and friable grey brown and reddish brown mottled sandy slightly gravelly CLAY with some (c. 10%)														
	subrounded of sandstone and siltstone. Assessed as compact brown very clayey SAND and GRAVEL with occasional/some (c. 5%-10%) angular cobbles of sandstone. Gravel is fine to coarse angular and subangular of sandstone and siltstone. $\theta \ge \theta = 0$ $\theta \ge \theta = 0$														
-	$\begin{bmatrix} 2.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$														
-	2.0 Image: state of the sta														
	Moderately to hightly weathered fractured thinly bedded X × X moderately strong light grey with dark grey staining X × X × × × SILTSTONE. Recovered as GRAVEL and COBBLES. X × X × × × End of Trial Pit at 2.70m 2.70														
- 3.0 - -															
4.0															
-															
-															
ŀ															
[
No g	undwat roundw	ter Conditions vater encountered during excavation.													
S Stab	bility tivelv s	table													
Gen	eral Re	emarks							- Marchander						
	ntation Im used	East-West. Dimensions 1.70m x 4.20r d.	n x 2.70m. Pito	lug at the	r reques	t of The E	nginee	r. No samp	les taken.	Maiin He	ad Ordna	ance			
					<u></u>					Figure	TPA	DD1			

Appendix B - Embankment – Pond SI Rotary Coring Data

Rotary Corehole Records

Figures: RCA 1 - 4

														REPO	RT NL	IMBER
	<u> </u>				GE	OTEC	CHN	ICAL CORE	LOG RI	ECORI	0				126	610
co	NTR	ACT	Ta	arbert/l	Ballylongfo	rd Embai	ıkmen	t-Pond SI				DRILLHOI)	RC /	41
												SHEET			Shee	t1of2
CC	-OR	DINA	TES(_)	101,865.4 148,080.1	4 E 5 N		GROUND LEV	/EL (m) TER (mm)	18 78	3.91 3	DATE ST/ DATE CO	ARTE	D TED	18/04 18/04	/2007 //2007
CL EN	JENT GINE	ER	S	nanno up Co	n LNG nsulting En	gineers		INCLINATION FLUSH		Ai	ir/mist	DRILLED LOGGED	BY BY		Mill D)rili
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fractur Spacin (mm) 250	те g 500	Legend	Descript	ion	Depth (m)	Discon	ntinuities		Elevation (mOD)	Standpipe Details	SPT (N Value)
								SYMMETRIX O DRILLING: Obs driller as returns SYMMETRIX O DRILLING: Obs driller as returns clay.	PEN HOLE served by of day. PEN HOLE served by of gravelly	1.40				12.51		N = 19 (3, 4, 3, 5, 4, 7) N = 23 (2, 3, 6, 5, 8, 4) N = 32 (4, 9, 10, 7, 8, 7)
يتبينا والمتعامين والمتعامين	7															N = 34 (5, 6, 8, 7, 10, 9) N = 34 (4, 5, 7, 7, 9, 11)
	9 9 9.	80 						SYMMETRIX (DRILLING: OI driller as angul returns of siltst bedrock).	OPEN HOLE bserved by ar gravel size tone (probabl	9.00 9.80				4.91		N = 41 (5, 5, 8, 11, 12, 10)
확	3 Cor	e box	es. N	love a	nd set up 1	Ihr.100m	m way	in pipe installed	21 999 2 5°11-1-6"1							
5	from	GL to	9.8m	. Mali	n Head On	dnance [Datum	used								
<u>i</u>									GROUNDW	VATER DE	TAILS					
교									Date	Hole	Casing	Depth to	Com	ments		
38.0									Dale	Depth	Depth	Water				
<u>2</u>		A	-													
C OLDLOG	D	ate	Tip	Depth	RZ Top	RZ Base	e	Туре								Figure RCA: (1 of 2)

	-													REPO	RTNL	JMBER
	es Os				GE	OTEC	CHN	ICAL CORE	e log re	ECOR	D				126	610
co	NTR/	ACT	Та	irbert/	Ballylongfo	rd Embai	kmer	t-Pond SI				DRILLHO	LENC	5	RC /	A1
со	-ORD	INAT	ES(_	_)	101,865.4 148,080.1	4 E 5 N		GROUND LEV CORE DIAME	/EL (m) TER (mm)	1	3.91 8	DATE ST	ARTE	D Eted	Shee 18/04 18/04	12 of 2 1/2007 1/2007
CLI EN	ENT GINE	ER	Sł Ar	nanno up Co	n LNG nsulting En	gineers		INCLINATION FLUSH	l		\ir/mist	DRILLED	BY BY		Mill C IGSL	Drill
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	s.c.r.%	R.Q.D.%	Fractur Spacin (mm) 0 250	re 19 500	Legend	Descript	lion	Depth (m)	Disc	ontinuities		Elevation (mOD)	Standpipe Detalls	SPT (N Value)
E 10		100	0	0	F		× × ×	Moderately stron	ng to locally		Discontin and plana	uities are smo ir to locally	ooth			
11	10.30	100	37	10			******	weak, thinly bed (laminations with to black and loca grained, SILTST interbedded sha slightly and loca weathered. (con	ded hin), dark grey ally grey, fine ONE with le. Fresh to lly moderately ntinued)	y /	undulose tight to m with local stained. gravel inf (10.4m-1 sub-20° v	Apertures a oderately ope iy iron oxide Locally clay illed 0.56m). Dips with locally	ane xn s are			
	11.60 x x slightly weath 12 100 77 7 13 13.10 x x x x										sub-vertion (9.95m-9 10.12m-1 10.64m-1 11.5m-1 11.64m-1 12.13m-1	cal fractures 99m, 10.17m, 10.79m, 1.6m, 11.79m, 12.18, 12.48,				
بر میں درا میں	4	100	35	0			(**********				13.01m- 13.91m- 15.53m- 16.58m- <i>(continue)</i>	13.1m, 14.02m, 15.63m, 16.7m). ∋d)				
1	14.6 5 15.2	0 100 0	42	0	Ł		*****									
1	6	100	71	29	È		****			46.7						
	16.7 7	'd					<u> </u>	End of Coreho	le at 16.7 (m)	10.7			<u></u>	-2.79	9	
فيتبت والتعيد	8															
	19															
	REMA	RKS						<u> </u>	INSTALLA	TION RE	MARKS			l	L	
1 13	Core	box	es. N	love	and set up	1hr.100m	m wa	vin pipe installed				· ·				-
교	rom G	9L 10	ទ.୪៣	. Ma	ni nead Of	unance i	วลเปก	U360								
- IGS									GROUNDW		ETAILS	Donth to				<u></u>
39.GP									Date	Depth	Depth	Water	Con	nments		
122			7101					······	4							
2 OLDLOG	Da	ate		Dept	AILS NRZ Top	RZ Bas	9	Туре								Figure RCA (2 of 2)

GEOTECHNICAL CORE LOG RECORD 12610 DORITING To Tarber/Diskly/org/ord Entwartment-Pand B DRILLING E IN Structure Structure Structure Structure Structure Structure Structure ORIGINATION TOUL Set Colspan="2">Structure Structure Structure <th cols<="" th=""><th>7</th><th>-</th><th>Т</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>T</th><th>REPO</th><th>RT NU</th><th>IMBER</th></th>	<th>7</th> <th>-</th> <th>Т</th> <th></th> <th>T</th> <th>REPO</th> <th>RT NU</th> <th>IMBER</th>	7	-	Т											T	REPO	RT NU	IMBER
CONTRACT TurbortBallylongford Embankmert-Pond SI DRL INOLE NO. Steel 1 d3 CC A2 Steel 1 d3 CO-RDINATES() 101,945.00 E 148,166.00 N GROUND LEVEL (m) CORE DIAMETER (mm) RADACTION TO SUBMIT IN SUBMIT IN CORE DIAMETER (mm) RELIANTON 7.08 DATE STARTED Net COMPLETED 100/02/07 DIALECTOR 10	E 16	تر) SL				GE	OTEC	HNI	CAL CORE	LOG RE	COR	D				126	610	
Scoordinue State T of S State T of S Scoordinue 148,160.00 h GROWD LEVEL (m) 7.08 DATE 55 TATE TERTED 160/42007 LIENT State Consulting Engineers PLUSH Arthritz Date Consulting Engineers PLUSH State S		RAC	 7T	Та	rbert/	Ballvlongfor	d Embar	kment	-Pond SI			· · · · · · · · · · · · · · · · · · ·	DRILLHO	LE NO)	RC /	42	
COORDINATES() 101 (346.00 E) CROUND LENCE (m) 7.8 DATE COMPLETED 100//2007 JUENT Shennon LNC Concenting Engineers NOLIMATION Athinst DRUED Y NBILED Y													SHEET			Shee	t1 of 3	
LINT Stancon LNG NCLINATION PolLLED BY MBI Drill MEMBER Acop Consulting Engineers FLUSH Alimiteit LOGGED BY IGSL. US Fracture Specing BY Specing Immunities Fracture Specing BY Specing Immunities Description Immunities Immun	0-0	RDI	NAT	E S(_	_)	101,945.00 148,166.00	DE DN		GROUND LEV	EL (m) FER (mm)	7 7	.08 8	DATE STA DATE CO	ARTE	D TED	16/04 18/04	/2007 //2007	
End of a generative strature of a sector of	LIEI NGI	NT NEEF	R	Sh An	ianno up Co	n LNG Insulting Eng	gineers		INCLINATION FLUSH		<u> </u>	ir/mist	DRILLED	BY BY		Mill D IGSL	Inili	
0	Downhole Depth (m)	Core Kun Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fractur Spacin (mm) 0 ²⁵⁰	e g 500	Legend	Descripti	on	Depth (m)	Disco	ntinuities		Elevation (mOD)	Standpipe Details	SPT (N Value)	
6 6.10 100 56 28 Interbedded grey sandstone. Fresh to locally slightly weathered (haiting Fractures throughout 0.5cm-1cm apart). stained suffaces. Dips are sub-vertical fractures (4.97m-5.04m, 6.27m-6.32m, 12.6m-12.68m, 14.45m-14.56m). 7 7.30 0 57 0 100 97 0 8 100 97 0 X X X X X X 114.45m-14.56m). 8 100 97 0 X X X X X X 114.45m-14.56m). 9 100 94 0 X X X X X X X X X X X X X X X X X X X X X X X X X 100 94 0 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.10 2.30 3.10 3.30 3.70 4.80	100 100 100 100 100	40 68 53 0 33 45 71	0 0 0 32 0			0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	SYMMETRIX OF DRILLING: Obs driller as returns clay. SYMMETRIX Of DRILLING: Obs driller as angular returns of siltstor bedrock). Strong to moder thinly bedded, g dark grey, fine tr grained, SILTST to slightly and lo moderately wea Strong to mode medium to thinly (cross bedded i dark grey to bla locally medium grained, SILTST	PEN HOLE erved by of gravelly PEN HOLE served by r gravel size ne (probable ately strong, rey to locally o medium rONE. Fresh cally thered. rately strong, y bedded aminations), rck, fine to (6.3m-6.9m) TONE with	<u>1.70</u> <u>2.10</u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	Discontinu to locally ope commonly stained st sub-10° w sub-vertic (2.1m-2.2 3.52m-3.6 Discontinu to locally to locally to locally Apertures locally ope commont	ities are sma lightly undul are tight to an with iron oxide infaces. Dips infaces. Dips al fractures im, 3.09m-3. 52m). uities are sm rough and pl slightly undu s are tight to en with y iron oxide	ooth anar ose. 2m, looth anar lose.	5.38 4.98 2.18			
INSTALLATION REMARKS INSTALLATION REMARKS 7 Core boxes. Move and set up 2hrs. Packer tests at 6.0m-7.10m (WL @ 1.13mbgl), 9.0m-10.0m (double; WL @ 0.50mbgl), 13.0m-14.0m (WL @ 0.34 mbgl) (Total 7½hrs). Water flowing over top of corehole during initial core runs. 100mm wavin pipe installed from GL - 2.10m bgl. Malin Head Ordinance Datum used GROUNDWATER DETAILS INSTALLATION DETAILS Date Hole Depth Casing Depth Depth to Water Comments INSTALLATION DETAILS Figure RO		6.10					interbedded gre Fresh to locally weathered (hai throughout 0.5d	ey sandstone. slightly rline fractures cm-1cm apar	;). 	stained s sub-10° v sub-vertic (4.97m-5 6.27m-6. 12.6m-12 14.45m-1	urfaces. Dip vith locally cal fractures .04m, 32m, 2.68m, 2.68m, 14.56m).	is are						
7 Core boxes. Move and set up 2hrs. Packer tests at 6.0m-7.10m (WL @ 1.13mbgl), 9.0m-10.0m (double; WL @ 0.50mbgl), 13.0m-14.0m (WL @ 0.34 mbgl) (Total 7½hrs). Water flowing over top of corehole during initial core runs. 100mm wavin pipe installed from GL - 2.10m bgl. Malin Head Ordnance Datum used INSTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type	RE	MAF	RKS	.	_•					INSTALLA	TION RE	MARKS						
6.0m-7.10m (WL @ 1.13mbgl), 9.0m-10.0m (double; WL @ 0.50mbgl), 13.0m-14.0m (WL @ 0.34 mbgl) (Total 7½hrs). Water flowing over top of corehole during initial core runs. 100mm wavin pipe installed from GL - 2.10m bgl. Malin Head Ordinance Datum used INSTALLATION DETAILS Date Tip Depth RZ Base Type Figure RO	70	Core	boxe	s. N	love	and set up 2	2hrs. Pa	ker te	sts at									
Water flowing over top of corehole during initial core runs. 100mm wavin pipe installed from GL - 2.10m bgl. Malin Head Ordnance Datum used INSTALLATION DETAILS Date Tip Depth RZ Base Type	6.0	.0m-7.10m (WL @ 1.13mbgl), 9.0m-10.0m (double; WL .50mbgl), 13.0m-14.0m (WL @ 0.34 mbgl) (Total 7½mg											<u></u>					
100mm wavin pipe installed from GL - 2.10m bgl. Malin Head Date Hole Depth Casing Depth to Water Comments INSTALLATION DETAILS Date Tip Depth RZ Base Type Figure RC	Wa	Nater flowing over top of corehole during initial core runs. (00mm wavin pipe installed from GL - 2.10m bd. Malin H								GROUNDW	ATER D	ETAILS						
Date Depth Depth Water INSTALLATION DETAILS Figure RC Date Tip Depth RZ Base Type	10	Omm	way	/in pi	pe in	stalled from	GL-2.1	0m bg	I. Malin Head	Date	Hole	Casing	Depth to	Com	ments			
INSTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type Figure RC	0	unan	ice L	aun	n use					Jaie	Depth	Depth	vvater					
	iN	STA Dat	LLA [.] ie	Tip	DET	AILS	RZ Bas	ə	Туре							F	igure RCA	

GEOTECHNICAL CORE LOG RECORD CONTRACT Tarbert/Ballylongford Embankment-Pond SI CO-ORDINATES(_) 101,945.00 E 148,166.00 N CO-ORDINATES(_) 101,945.00 E 148,166.00 N CORE DIAMETER (mm) 7.08 DATE STARTED 1 DATE COMPLETED 1 DATE COMPLETED 1 DISCONTRUES(_) ORDINATES(_) ORDINATES(_) CO-ORDINATES(_) 101,945.00 E GROUND LEVEL (m) 7.08 COME DIAMETER (mm) 7.08 DATE STARTED 1 DATE COMPLETED 1 DATE COMPLETED 1 DISCONTINUITION PLUSH Altrinist DISCONTINUITIES 10100 E Exacture Strong to moderately strong, medium (5 mAR-6.5m) Colspan= 2 DISCONTINUITIES are strong the locally colspan= 3 OLOGY COLSPAN 100 90	12610 RC A2 Sheet 2 of 3 16/04/2007 18/04/2007 Mill Drill IGSL (ennex (s) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c
CONTRACT Tarbert/Ballylongford Embankment-Pond SI DRILLHOLE NO F CO-ORDINATES() 101,945.00 E GROUND LEVEL (m) 7.08 DATE STARTED DRILLED BY N CLIENT Shannon LNG Fracture Fracture Fracture Description E E GO Discontinuities GO	RC A2 Sheet 2 of 3 16/04/2007 18/04/2007 18/04/2007 Mill Drill IGSL (ennex) standard (ennex) Solution Solution
CO-ORDINATES(_) 101,945.00 E GROUND LEVEL (m) 7.08 DATE STARTED 1 CLIENT Shennon LNG NCLINATION 78 DATE STARTED 1 DRILED BY Any Consulting Engineers INCLINATION DRILLED BY INCLINATION ENGINEER Any Consulting Engineers Fracture Spacing Inclinations Inclinations GO J 52 % % Corport Engineers Inclinations Inclinations 10 95 % % % Strong to moderately strong, medlum to thinly bedded Discontinuities are smooth to locally rough and planat to locally started (Larinitations), dest (Str STONE with interbedded gray sandstone. Strong to moderately strong, medlum to thinly bedded 11 100 90 43 X Strong to moderately strong, medlum (Com-Gam), control with interbedded gray sandstone. Apertures are sight to locally slightly undulose. Apertures are think to locally slightly undulose. Apertures are think to locally slightly undulose. Apertures are think to locally slightly undulose. Apertures are think to locally copen with correspondent with coally slightly undulose. 11 100 96 51 X X X 11.90 100 96 51 X X X 11.4	Standpipe Details 16/04/2007 18/04/2007 Mill Drill IGSL (a) Aalree CSL (a) Aalree S S S S S S S S S S S S S
CLIENT ENGINEER Shannon LNG Aup Consulting Engineers INCLINATION FLUSH DRILLED BY LOGGED BY N LOGGED BY ENGINEER Aup Consulting Engineers Fracture Spacing (mm) Fracture Spacing (mm) Fracture Spacing (mm) Description Image: Spacing Spacing (mm) Image: Spacing (mm) Description Image: Spacing Spacing (mm) Image: Spacing (mm) Description Image: Spacing Spacing (mm) Image: Spacing (mm) <	Standpipe Details Standpipe Details SPT (N Value) SPT (N Value)
Employee Fracture Spacing (mm) Fracture Spacing (mm) Description Figure (mm) Discontinuities Discontinuities 10 10.30 250 500 10.30	Standpipe Details SPT (N Value)
10.30 X X X X X X X X X X X X X X X X X X X	
11 100 90 43 (cross bedded faminations), dark grey to black, fine to locally signaty unduces. Apertures are tight to locally medium (6.3m-6.9m) grained, SILTSTONE with interbedded grey sandstone. Fresh to locally signity weathered (hairline fractures throughout 0.5cm-1cm apart). (continued) Apertures are tight to locally signaty unduces. Apertures are tight to locally signaty into date stained surfaces. Dips are sub-10° with locally sub-vertical fractures (4.97m-5.04m, 6.27m-6.32m, 12.6m-12.68m, 14.45m-14.56m). (continued) 11 100 96 51 X X X X X X X X X X X X X X X X X X X	
11 100 96 51	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
16.70 X X X X X X X X X X X X X X X X X X X	
17.80 18 100 85 67 100 85 87 100 80 80 100 80 100 80 100 80 80 100 80 80 100 80 80 100 80	
18.60 x x x 19 100 100 98 92 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x	
REMARKS End of Coreholicitest Station REMARKS	
6.0m-7.10m (WL @ 1.13mbgl), 9.0m-10.0m (double; WL @ 0.50mbgl), 13.0m-14.0m (WL @ 0.34 mbgl) (Total 7½hrs).	
Image: Second	<u></u>
Billion Depth Depth Water Comments	
INSTALLATION DETAILS O Date Tip Depth RZ Top RZ Base Type	Figure RCA2

	T									<u></u>				REPO	RT NU	MBER
	<u>fi</u> GS	تم ل			GE	OTEC	HNIC	CAL CORE	e log ri	ECORI	D				126	510
co	NTR	ACT	Τε	urbert	/Ballylongfo	rd Emban	kment-	Pond SI				DRILLHO	LE NO		RC /	42
со	-ORI	DINAT	res(_)	101,945.0	0 E		GROUND LEV	/EL (m)	7.	.08	BHEET	ARTED)	Sheet 16/04	13 of 3 /2007
0					148,166.0	0 N			TER (mm)	7	8	DATE CO	MPLE	TED	18/04 Mill D	/2007
EN	GINE	ER	Ar Ar	up C	onsulting En	gineers		FLUSH		A	ir/mist	LOGGED	BY		IGSL	
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fractur Spacin (mm) 0 ²⁵⁰	e g 500	Legend	Descript	tion	Depth (m)	Discor	ntinuities		Elevation (mOD)	Standpipe Details	SPT (N Value)
- 20 -	19.9	1											ŀ	12.82		
21																
22	2															
2	3															
2	4															
1.1.2	5															
2	6															
	27															
ي بيا يوني	28															
حميليمي	29															
2																
E ST	REM/	RKS							INSTALLA	TION RE	MARKS					
50	Con	e box 7.10r	es. N n (Wl	10ve _ @ 1	and set up 2 1.13mbgl), 9	2nrs. Pac 0.0m-10.0	ker tesi m (dou	is at ble; WL @ al 71/(bre)								
	Vate	ingi) flowi	ng o\	ver to	p of corehol	e during i	nitial co Im bol	a 772115). Dre runs. Malin Head	GROUNDV	VATER DI	ETAILS		1			
9.GPJ	Ordna	m wa ance l	Datun	pe in n use	statied from d	GL-2.11	aar ogi.		Date	Hole Depth	Casing Depth	Depth to Water	Comr	nents		
1223							<u>.</u>									
COLDLOG	D	ate		Dept	AILS h RZ Top	RZ Base		Туре	-							Figure RCA2 (3 of 3)

/	T														REPO	RTN	UMBER
					GE	EOTEC	CHN	ICAL CORE	LOG RE	ECOR	RD					12	610
CO	NTRA	CT	Ta	rbert/	Baliylongfo	rd Emba	nkmen	t-Pond SI					DRILLHO	DLE N	D	RC	A3
co	ORD	INAT	ES(_	.)	101,953.9 148,220.5	8 E 1 N		GROUND LEV CORE DIAME	/EL. (m) TER (mm)	(6.3 78	B	DATE ST	TARTE	ED ETED	She 19/0 20/0	et 1 of 2 4/2007 4/2007
CLI EN	ENT GINE	R	Sh An	anno .ip Co	n LNG Insulting En	gineers		INCLINATION FLUSH			Air/	mist	DRILLE) BY) BY		Mill IGS	Drill L
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fractur Spacin (mm) 0 250	re Ig 500	Legend	Descript	ion	Depth (m)		Disco	ntinuities		Elevation (mOD)	Standpipe Details	SPT (N Value)
	6.50 8.11 9.5 EMA		99 93 93	65 75 30				SYMMETRIX OD DRILLING: Obs driller as returns clay. SYMMETRIX C DRILLING: Ob driller as angula returns of siltsto bedrock). Very strong to s to thinly bedded medium grainee Freshly weather Freshly weather	PEN HOLE erved by of gravely DPEN HOLE served by ar gravel size one (probable strong, mediu d, grey, fine to d SILTSTONI red.	4.6 5.0 5.0 8.7 8.7	0 0 70	Discontinu rough and undulose, tight to mu Dips are s Jocally sul fractures 9.93m-9.3 9.98m-10 10.32m-1 10.79m-1 11.44m-1 15.12m-1	uities are sl i planar to l Apertures oderately o sub-20° wit b-vertical (8.3m-8.38 39m, 0.17m, 0.55m, 0.83m, 1.58m, 15.24m).	ightiy ocally are pen. h m,	-2.3	2	
5	Core	boxe	s. M	ove a	and set up 2	21/2hrs. F	acker	tests at									
٦Ľ	.om-t gl) (4	/2hrs). 10	Umm	wavin pipe	installed	GL - (0.50m bgl.Malin									· · · · · · · · · · · · · · · · · · ·
ĭ	lead (Ordna	ince l	Datur	n used				GROUNDW	ATER	ЭEI	AILS		<u> </u>			
5.0									Date	Hole Depth	1	Casing Depth	Depth to Water	Con	nments		
1223										-							
<u>ا او</u>	NSTA	LLA.	ΠΟΝ	DET	AILS	I											
	Da	te	Tip	Dept	n RZ Top	RZ Bas	<u>}</u>	Туре									Figure RCA: (1 of 2)

1															REPO	RTN	IUMBER
	380				GI	EOTEC	HN	CAL CORE	E LOG R	EC	ORI)				12	2610
CON	ITRA	ст	Та	rbert	Ballylongfo	ord Embar	kmen	-Pond SI					DRILLHO	LE NO	5	RC	A3
CO-	ÖRD	INAT	ES(_	_)	101,953.9 148,220.5	98 E 51 N		GROUND LET	VEL (m) ETER (mm)		6.: 78	38 3	DATE ST	ARTE	D ETED	Sne 19/0 20/0	et 2 of 2 04/2007 04/2007
	ENT		Sh	nanno un Co	n LNG	nincore			I		۸.	r/miet	DRILLED	BY		Mill	Drill
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fractu Spacir (mm) 0 250	re 193) 500	Legend	Descrip	tion		Depth (m)	Disco	ntinuities		Elevation (mOD)	Standpipe Details	SPT (N Value)
10	10.00	100	40	7			× × × × × × × × × × × × × × × × × × ×	Strong to locally (10.9m-11.4m) moderately stron thinly (cross-lan bedded, grey, d	very strong and locally ng, medium t ninated) ark grev and	o		Discontinu and plana undulose. tight to loc are sub-20	ities are smo r to locally Apertures a cally open. D 0° with locall	ooth are)ips v			
11	10.90	100	99	72			***	black, fine to loc grained SILTST interbedded sha weathered. (cor	ally medium ONE with ale. Freshly ntinued)			sub-vertic (9.33m-9. 9.98m-10 10.79m-1 11.44m-1 15.12m-1	al fractures 39m, .10m, 0.83m, 1.11.58m, 5.24m).				
13	12.30	100	90	45			*******					(continue	d)				
- - - - 14	13.60				F		******										
- 15	15.10	100	95	36	F		******										
16		100	97	65			*******										
- - - - - - - - - - - - - - - - - - -	16.60	100	98	75	Ē		******										
	18.10						××	End of Coreho	ile at 18.1 (m)	18.10				-11.7	2	
									INSTALLA			ADKe					
5	Core	boxe	s. M	ove a බ 1 ඉ	and set up : S9m hai) er	21/2hrs. Pa	acker t	ests at n (WL @ 0.59m	INQ IALLA		- 1 - 12]¥						
	i) (41) ad C	/ahrs) Drdna	. 10 nce l	Jmm Datur	wavin pipe n used	installed	GL - 0	.50m bgl.Malin	GROUNDY	VATE	ER DE	TAILS					
212									Date	ł	lole	Casing	Depth to Water	Com	ments		<u> </u>
	STA	LLA'I	Tion	DET	AILS	RZ Base		Туре									Figure RCA
RCOL																	(2 of 2)

_	-							<u></u>						Τ	REPO	RT NU	IMBER
(2)					GE	OTEC	HNI	CAL CORE	LOG RE	ECOR	D					126	610
CO	ITRA	ст	Tar	bert/l	Ballylongfor	rd Emban	kment	-Pond SI					DRILLHO	LE NO)	RC /	44
													SHEET			Shee	t1 of 2
CO	ORDI	NAT	ES(_)	102,010.8 148,239.4	3 E 5 N		GROUND LEV	'EL (m) TER (mm)	1 7	11.69 78		DATE ST	ARTE	D	21/04 21/04	/2007 //2007
CLI ENG	ent Sinee	R	Sh: Aru	annoi Ip Co	n LNG nsulting Eng	gineers		INCLINATION FLUSH			Air/mis	st	DRILLED LOGGED	BY BY		Mill D IGSL)/ill
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	s.c.r.%	R.Q.D.%	Fractur Spacin (mm) 250	e g 500	Legend	Descript	ion	Depth (m)		Discor	tinuities		Elevation (mOD)	Standpipe Details	SPT (N Value)
							××	SYMMETRIX OF DRILLING: Obs driller as returns clay.	PEN HOLE erved by of gravelly	6.7	0				4.99		N = 18 (3, 4, 3, 5, 4, 6) N = 23 (4, 4, 7, 6, 5, 5) N = $50/10$ mm (14, 11, 50) N = 34 (7, 5, 8, 10, 7, 9)
8	7.00	100	96 23	70 13			*********	driller as angula returns of sittsti bedrock). Strong to mode thinly (cross-lan bedded, grey, c black, fine to c	ar gravel size one (probable erately strong minated) dark grey and parse grained		Di an tig wi st	iscontinu nd plana ndulose. ght to ma rith local noderate taining a	uities are sn r to locally Apertures oderately op slight to iron oxide nd locally si	are en	4.69		
<u>ىرىدىدىدى بىرى</u>	8.70	100	71	21			*****	SILTSTONE w fine grained sh locally slightly/ weathered.	rith interbedde ale. Freshly moderately	ed to	ar st fra	re sub-1 hort (>10 ractures.	0° with freq 0cm) sub-ve	uent ertical			
	EMA	RKS	_1						INSTALLA	TION RE	MAR	KS					
4	Core	boxe	s. M	ove a	nd set up '	Ihr. 100n	ım wa	vin pipe									
입"	Istalle	u 11701	n GL	- 7.0	n byl. Ma	an meau (Jung	ice Datum used									
5									GROUNDW	IATER D		LS	Denti- 4-	1			
9.6									Date	Hole Depth		Depth	Uepth to Water	Com	ments		
1223																	
	NSTA Da	LLA ⁻ te	Tip	DET. Deptr	AILS RZ Top	RZ Base		Туре]	Figure RCA4
10																((1 of 2)

E NO RTED APLETED BY BY (OOm) uoistana BY	RC Sheet 21/0 21/0 Mill I IGSI silies Details	610 A4 et 2 of 2 4/2007 4/2007 Drill L (a) mittor X, L
E NO RTED APLETED BY BY (QOW) uoipenael BY coth e	RC Sheet 21/0 21/0 Mill I IGSI IGSI	A4 et 2 of 2 4/2007 4/2007 Drill L (ennex N N N
RTED APLETED BY BY (QOW) uotite and both e	Snee 21/0 21/0 Mill I IGSI	4/2007 4/2007 Drill L (annus N N N N N N N
BY BY Elevation (mOD)	Standpipe Details Standpipe	Drill L (N Value)
Elevation (mOD)	Standpipe Details	T (N Value)
e n		ů d
e 1		
s ent ical		
-5.2	21	
		· · · · · · · · · · · · · · · · · · ·
Commen	ts	
		Figure RCA4 (2 of 2)
	oth s nt cal -5.2	Image Image Image

Appendix C - Embankment – Pond SI Packer Test Data

Packer Test Data Sheets

Figures PT 1 - 5

PACKER TEST RESULT SHEET IGSL (F13)												
JOB NO.	7.08											
CONTRACT	Tar/Ballylong	BOTTOM OF H	7.10									
LOCATION	Co. Kerry	TOP OF TEST	SECTION (m)				6.00					
		BOTTOM OF TI	OTTOM OF TEST SECTION (m)									
BOREHOLE NO.	RC-A02	CENTRE OF TE	CENTRE OF TEST SECTION (m)									
TEST NO.	1	GUAGE HEIGH	T ABOVE GRO	UND LEVEL (I	m)		0.40					
		INITIAL GROUN	ND WATER LEY	VEL (m)			1.13					
FLOW METER READINGS												
RUN	PRESSURE	0 MIN	2 MIN	5 MIN	10 MIN	14 MIN	25 MIN					
NUMBER	(BAR)	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(LITRES)					
1	0.22	11220.0	11308.0	11419.5	11579.0	11671.5	<u>n/a</u>					
		14 MIN	16 MIN	16 MIN	17 MIN							
		(LITRES)	(LITRES)	(LITRES)	(LITRES)							
2	0.3	11780.0	11890.0	11990.0	12090.0	n/a	n/a					
WATER TAKEN												
RUN	0-2 MIN	2-5 MIN	5-10 MIN	10-14 MIN	20-25 MIN							
NUMBER	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(L/MIN)					
]	00.00	111.50 15 16 MIN	109.00	UC.26	n/a	401.00	32.23					
	(1170EQ)	ID-TO MIN	ID-I/ WIIN									
. 2	110.00	100.00	100.00	n/a	n/a	310.00	103.33					
EQUIVALENT HEAD (M) 0.00 3.73 4.53 0.00 AVERAGE	Q (L/MIN/METRE 0.00 29.32 93.94 0.00) (100. NIM 50.) 0 0.		1.00 EQ	2.00 3.0 UIVALENT H	00 4.00	5.00					
LUGEON	1429.9					1 2 1 mm						
<u>Analysis by H</u> Method	oulsbey	TEST	PRESSURE	(BAR)	LUGEON VA	LUE 100 150 200	250					
		2			2							
Notes: Packer Press Gooseneck: 0 Geology: Frac	ure: 90 PSI).95m bgl ctured SILTST	Start Time: Stick-up 0.5 FONE	17:10 2m		16/04/2007	,						

. ¹ - 4

	PA	CKER TE	ST RESI	JLT SHE	ET	<u></u>	IGSL (F13)
JOB NO	12239	GROUND LEVE	L (mOD Malin I	Head)			7.08
CONTRACT	Tar/Ballviong	BOTTOM OF H	OLE (m)			1	14.50
LOCATION	Co. Kerry	TOP OF TEST	SECTION (m)				13.00
			EST SECTION	(m)			14.50
	PC-402	CENTRE OF TR	ST SECTION ((m)			13.75
TEST NO	2		T ABOVE GRO	UND LEVEL (r	n)		0.35
itai no.	£	INITIAL GROUP		/FL (m)	7		0.34
FLOW METER	READINGS						
	DDESSUDE		5 MIN	10 MIN	15 MIN	20 MIN	25 MIN
NUMBER	(BAR)	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(LITRES)
1	0.45	12169.0	12173.5	12177.4	12181.3	n/a	n/a
2	0.8	12181.3	12188.5	12195.5	12202.2	n/a	n/a
3	1.2	12202.2	12232.3	12271.0	12304.5	n/a	n/a
4	0.8	12304.5	12323.2	12343.3	12363.2	n/a	n/a
5	0.4	12363.2	12373.5	12385.1	12395.3	n/a	n/a
WATER TAKE	<u>EN</u>						
RUN	0-5 MIN	5-10 MIN	10-15 MIN	15-20 MIN	20-25 MIN	Cumlative	Q
NUMBER	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(L/MIN)
1	4.50	3.90	3.90	n/a	n/a	12.30	0.82
2	7.20	7.00	6.70	n/a	n/a	20.90	1.39
3	30.10	38.70	33.50	<u>n/a</u>	n/a	102.30	0.82
4	18.70	20.10	19.90	n/a	n/a n/a	38.70	2.14
. 5	1 10.30	11.60	10.20	n/a	11/a	52.10	2.14
EQUIVALENT	Q				•		
HEAD	(L/MIN/METRE	^{.)} 5.00) -				_
(M)	1 0.00						
0.00	0.00	÷ ÷	' †				
5.19	0.03	₩ ₹ 3.00) +		1		
0.09	0.95	- ∃ 2.00) 🕂				
8.60	2.61	- 0°	, l		_	/	
0.09	1.43	- 1.00	Ϋ́Τ				
4.09	0.00	- 0.00					
0.00	0.00	1	0.00 2.00	4.00	6.00 8.00	10.00 12.	00 14.00
AVERAGE				EQU	JIVALENT HE	AD	
LUGEON	23.5						
		TEST	PRESSURE	(BAR)	LUGEON VA	LUE	
Analysis by H	loulsbey						
Method		0	1	2	0 20	40 60 80	100
		<u> </u>			0 20	.40 00 00	, 100
		1		·	1		
		3					
		5			4		-
1							
Netcas							and the second
INOTES:		o	00-00		47/04/000	7	
Packer Press	sure: 90 PSI	Start Time:	09:00		17/04/200	l and a second se	
Gooseneck:	1.25m bgl	Stick-up 0.	52m				
Geology: Fra	CURED SILTS	IONE					
Single Packe	ЭГ						

. 7

	PA	CKER TE	ST RESI	JLT SHE	ET		IGSL (F13)				
JOB NO.	12239	GROUND LEVE	L (mOD Malin	Head)			7.08				
CONTRACT	Tar/Ballylong	BOTTOM OF H	18.30								
LOCATION	Co. Kerry	TOP OF TEST S	SECTION (m)				9.00				
		BOTTOM OF TI	EST SECTION	(m)			10.00				
BOREHOLE NO.	RC-A02	CENTRE OF TE	ENTRE OF TEST SECTION (m)								
TEST NO.	3	GUAGE HEIGH	T ABOVE GRO	UND LEVEL (r	n)		0.35				
		INITIAL GROUN		VEL (m)			0.50				
FLOW METER	R READINGS										
RUN	PRESSURE	0 MIN	5 MIN	10 MIN	15 MIN	20 MIN	25 MIN				
NUMBER	(BAR)	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(LITRES)				
1	0.5	12438.2	12451.8	12463.9	12476.2	12488.2	n/a				
2	0.65	12488.2	12496.0	12504.8	12514.5	n/a	n/a				
3	0.85	12514.5	12534.0	12558.0	12582.9	n/a	n/a				
4	0.6	12582.9	12596.9	12606.5	12613.3	n/a					
5	0.4	12613.5	12621.8	12632.5	12640.6	n/a	<u> </u>				
WATER TAKE	<u>EN</u>										
RUN	0-5 MIN	5-10 MIN	10-15 MIN	15-20 MIN	20-25 MIN	Cumlative					
NUMBER	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(LITRES)		(L/MIIN) 2.50				
1	13.60	12.10	0.70	12.00	n/a	26.30	1 75				
2	10 50	24.00	24 9.70	n/a	n/a	68.40	4.56				
<u> </u>	14.00	9.60	6.80	n/a	n/a	30.40	2.03				
5	8.30	10.70	8.10	n/a	n/a	27.10	1.81				
EQUIVALENT HEAD (M) 0.00		$\overline{2}$ 5.00	Ţ			//	/*				
5.85	2.50	€ 3.00)+		_						
7.35	1./5	1 2 2.00) 🕂			\sim					
9.35	4.00	o				-					
0.00	2.03	-	'T								
4.65	0.00	- 0.00			++-						
0.00 0.00 2.00 4.00 6.00 8.00 10.00 AVERAGE EQUIVALENT HEAD LUGEON 36.4 Comparison Comparison											
		TEST	PRESSURE	(BAR)	LUGEON VA	LUE					
<u>Analysis by H</u> <u>Method</u>	<u>łoulsbey</u>	0 1 1 3 1 5 1	0.5	1 	0 20 1 4	40 60 80) 100 				
Notes: Packer Press Gooseneck: Geology: Fra Double Pack	sure: 90 PSI 0.75m bgl cured SILTS er	Start Time: Stick-up 0.4 FONE	09:00 52m		18/04/2007	7					

.

.

4

۴.

2

	PA	CKER TE	ST RES	JLT SHE	ET		IGSL (F13)					
JOB NO.	12239	GROUND LEVE	L (mOD Malin	Head)			6.38					
CONTRACT	Tar/Ballylong	BOTTOM OF H	OTTOM OF HOLE (m) 10.80									
LOCATION	Co. Kerry	TOP OF TEST	SECTION (m)				9.80					
			ERT RECTION	(m)			10.80					
	00 402	CENTRE OF T	EST SECTION	(m) (m)			10.00					
BUREHULE NU.	AU3	CENTRE OF T	T ABOVE CRO		m)		0.20					
TEST NO.	۷				,		0.59					
FLOW METER	READINGS											
RUN	IPRESSI IRE	0 MIN	5 MIN	10 MIN	15 MIN	20 MIN	25 MIN					
NUMBER	(BAR)	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(LITRES)					
1	0.3	13309.5	13316.1	13316.8	Stopped	n/a	n/a					
2	0.6	13316.8	13332.6	13355.8	13384.6	n/a	n/a					
3	0.9	13384.6	13408.2	13430.6	13453.1	n/a	n/a					
4	0.55	13453.1	13471.2	13487.8	13504.8	n/a	n/a					
5	0.35	13504.8	13514.0	13515.5	Stopped	n/a	n/a					
WATER TAKE	EN											
RUN	0-5 MIN	5-10 MIN	10-15 MIN	15-20 MIN	20-25 MIN	Cumlative	Q					
NUMBER	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(LITRES)	(L/MIN)					
1	6.60	0.70	n/a	n/a	n/a	7.30	0.73					
2	15.80	23.20	28.80	n/a	n/a	67.80	4.52					
3	23.60	22.40	22.50	n/a	n/a	68.50	4.57					
4	18.10	16.60	17.00	n/a	n/a	51.70	3.45					
5	9.20	1.50	n/a	n/a	n/a	10.70	1.07					
HEAD (M) 0.00 3.79 6.79 9.79 6.29 4.29 0.00 AVERAGE LUGEON	(L/MIN/METRE 0.00 0.73 4.52 4.57 3.45 1.07 0.00 42.4	5.00 4.00 (NIW) 3.00 2.00 0 1.00 0.00		0 4.00 EQU	6.00 NIVALENT HE	8.00 10.0 AD						
Apolygia by H	louleboy	IESI	PRESSURE	(BAR)	LUGEON VA	LUE						
Method	<u>ouispey</u>	0 1 3 5	0.5	1 1 ■	0 40 1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80 120 -	160 ——i					
Notes: Packer Press Gooseneck: 1 Geology: Frac Single Packer	ure: 90 PSI I.50m bgi ctured SILTS ⁻ r	Start Time: Stick-up 0.5 TONE	11:00 60m		20/04/2007	,						

;

.**

Appendix D - Embankment - Pond SI Downhole Geologging Data

Notes on Geologging Geologging Records Pages RG 1 – 5 Figures: OPTV 1 - 4

Tarbert/Ballylongford Embankment – Pond SI

Coreholes RCA 1-2-3-4 26th April 2007

SUMMARY

Robertson Geologging Ltd carried out a programme of geophysical wireline logging works in boreholes for IGSL at Tarbert / Ballylongford 26th April 2007

This report includes wireline log data from four boreholes 1-2-3-4. Boreholes were core-drilled and were nominally vertical and all logged on above date.

The logging suite in all boreholes comprised of Optical televiewer only, Acoustic televiewer was not used due to clarity of borehole fluid.

Meterage Logged

Borehole	OPTV	Start	Finnish	Casing	Water	Casing	Bit	Drill
Number		Depth	Depth	Depth	Level	Size	Size	Depth
		metre	metre	metre		mm	mm	metre
RCA01	OPTV	10	16.1	10	unknown	100	85	16.7
RCA02	OPTV	2.43	18.9	2.5	.86	100	85	19.1
RCA03	OPTV	5.3	17.6	5.3	GL	100	85	18.1
RCA04	OPTV	7.1	16.2	7.1	GL	100	85	16.9

DATA ACQUISITION

No operational difficulties were encountered in all of the boreholes and the data quality was high throughout. The optical televiewer, provided excellent fracture and bedding resolution and characterisation.

Field data were acquired in accordance with normal working practice.

PROCESSING AND INTERPRETATION

Log depths referenced to ground level, distortion are the effects of near-surface magnetic anomalies cased usually by casing. The logs are corrected to magnetic north and fracture and discontinuities were recognised as features.

GLOSSARY OF TERMS

Centraliser

A device designed to maintain a probe in the centre of a borehole.

Correlation

Determination of the position of straigraphically equivalent rock units in different wells, often done by matching the character of geophysical logs; also the matching of variables, such as log response and core analyses.

Curve

A trace or continuous record of a property measured in a borehole. May be used as a synonym for log, or several curves may constitute a log.

Decentralise

Forcing a logging probe against the side of the drill hole.

Robertson Geologging Limited

Deviation log

A log of the departure azimuth and distance in degrees or metres between the drill hole or probe axis and the vertical.

Dip

The angle of inclination, measured from the horizontal, of a geologically-significant lineation, e.g. bedding or fracture.

Formation

Geological materials through which the borehole is drilled

Open Hole

Uncased intervals of a drill hole

Optical Televiewer Log

An optical image derived from light reflected by the borehole wall; provides location and orientation of bedding, fractures and cavities.

Probe

Also called sonde or tool; downhole well-logging instrument package.

Tadpole Plot

An arrow plot of the results of calculation of the dip and strike of beds or fractures from televiewer and dipmeter logs. The lateral position of the tadpole or arrow indicates the angle of dip, and the direction of the line or arrow indicates the dip direction.

TOOL SPECIFICATIONS

RG probes range in diameter from 38mm to 60mm and, as standard, are designed for pressures of 20MPa (3000psi) and temperatures up to 70°C. Most probes are also available with extended ranges of 33MPa (5000psi) and 125°C and certain probes may be upgraded to higher temperatures and pressures to special order.

Most RG probes include multiple sensors, and may acquire up to thirty two log measurements simultaneously. Data acquisition is depth-based, with a typical sample interval of 1cm (or 1/20th foot), controlled from the surface through a downhole microprocessor. The data transmission through the logging cable is in a standard serial format, removing any requirements for dedicated surface modules for individual probes.

RG slimhole logging systems digitise data right at the point of measurement, in the probe. All subsequent data transmission, processing and recording is in digital format. Some well known benefits of this include:

- Accurate stable measurements requiring minimal calibration
- No significant signal distortion during cable transmission
- Simple operation without critical adjustments
- No dedicated surface modules required for individual probes
- Compatibility with popular PC-compatible hardware
GEOPHYSICAL BOREHOLE LOGGING

BOREHOLE OPTICAL TELEVIEWER

The OPTV probe provides a continuous, very high resolution image of the borehole walls using a unique optical imaging system. This can be rapidly interpreted, using data from the integral orientation module, to obtain a complete feature analysis including dip, strike, frequency and fracture aperture. A popular visual data display option is the projection of features onto an imaginary core which can be rotated and viewed from any orientation. An OPTV survey can often replace expensive coring with its associated problems of incomplete core recovery.

The RG OPTV has unique technical features which allow it to log at speeds of 2.5m/min while still achieving 1mm resolution, even on long cable lengths. Other probes on the market are limited typically to 0.8m/min under similar conditions. The probe can also operate as a normal video camera and external lightheads are available for up to 20inch boreholes

The OPTV is based on a downhole CCD camera which views a reflection of the borehole walls in a hyperbolic mirror. At successive depth increments (normally 0.5mm), rings of pixels corresponding to scans of the borehole walls are acquired from the probe and built up into an image. This is orientated to North, displayed in real time and recorded on disk for subsequent data analysis.

The OPTV offers a major advantage over a conventional CCTV survey in providing a continuous 'unwrapped' 360° image of the netic North. It also replaces the acoustic televiewer (ATV or

BHTV) where high image resolution is required or where the lack of borehole fluid prevents the use of acoustic probes.

Optional RG-dip interpretation software is available for detailed analysis of the displayed features including conventional dipmeter arrow plots, stereograms of feature orientations and synthetic core images. Refer to the software area of the site for further details.

MEASUREMENTS:

Real-time: VDU display of actual and unfolded images of borehole walls

Recorded data: Digital record of unfolded image to HDD, Probe orientation

APPLICATIONS:

Ground investigation for civil engineering Slope stability studies Tunnel hazard prediction including weak rock and water entry Nuclear waste repository pre-studies Blast design Mining Environmental

OPTV DATA PROCESSING RGLDIP vsn 6.2 BPRETED OPTV DIPS LOG 18.17

15 Oct 2007

IGSL				
	Bore	hole: RCA 01		
Tarbert/Ballylongford Embankm	ent - Pond Site Investigation	1		
top of borehole		1	North ref. is ma	agnetic
East: 101865.44 North: 148080.15			Depth units are Vertical scale:	e metres 1/10
Elev: 13.91			Horiz scale = v	vert scale
Zone from 16.163 to 9.959m			Borehole diam	: 8.500cm
Format. BHT V-NESWIN			venicai = bore	noie-axis
Feature		Identified un	its	
Feature	, ,			
	ARROW PLOT			BOREHOLE
R	for deviation	N315°	N45°	DEVIATION
	0° 20° 60°	°90° →	\rightarrow	0° 10°
AVA -	- `•			
	. `•			2
				1/2
	-			(è
	•	-		\
	-	•		
				è
	-	-		2
	0,4137m , N330 1	13		19
3	-	-		
	- \			/9
				•
		7		2

RCA 01

11.3_

11.4_

11.482 to 9.959m

10000

Figure OPTV1 (2 of 6)

i.

optvdata RCA1[1].txt

RGLDIPv6.2 OPTV results

K = 0: BEDDING
K = 2: FRACTURE

borehole RCA 01 zone from 9.959 to 16.164 m North ref is magnetic Dip format: Dip-azimuth and Dip

deviati	on						Upper	Lower	Well	Well
Dev	Depth Az Thickness	zimuth Dij	o 1-P0/100	n	Q	К	Depth	Depth	Diam	Azimuth
		-								
1	15.562 N	1314 18.8	3 0.965	4	в	0	15.546	15.577	0.085	1.00
2	15.526 N	1323 16.4	0.979	5	Α	0	15.512	15.540	0.085	359.81
3	15.458 N	1322 17.6	5 0.993	4	Α	0	15.443	15.473	0.085	358.00
4	15.278 N	1315 17.0	0.992	5	Α	0	15.263	15.293	0.085	355.36
5	15.105 N	1310 18.0	0.953	6	в	0	15.090	15.120	0.085	355.51
6	14.857 N	1306 18.4	0.991	5	А	0	14.841	14.872	0.085	0.09
7	14.759 N	1322 18.3	L 0.939	4	С	0	14.743	14.774	0.085	352.52
2.00	14.591 N	150 79.8	3 1.000	3	A	2	14.391	14.435	0.085	354.00
2.00	14.516 N	316 18.5	0.999	4	А	0	14.501	14.532	0.085	354.59
10	14.280 N	1009 54.8	3 1.000	3	A	2	14.341	14.344	0.085	354.00
11	14.234 N	1356 16.6	0.959	6	В	0	14.220	14.249	0.085	354.23
12	14.032 N	162 59.2	1.000	3	А	2	14.053	14.098	0.085	352.00
13	14.031 N	161 75.8	0.933	4	с	2	13.884	14.178	0.085	352.00
14	13.694 N	306 18.3	0.975	4	Α	0	13.678	13.709	0.085	355.95
15	13.601 N	1315 16.3	0.981	5	A	0	13.587	13.615	0.085	353.20
16	13.576 N	169 49.3	1.000	3	А	2	13.530	13.542	0.085	353.41
17	13.259 N	1325 18.3	0.973	5	A	0	13.243	13.274	0.085	357.51
2.00	0.0000 13.133 N	065 82.9	1.000	3	A	2	12.760	12.808	0.085	353.26
2.00	0.0000 13.121 N	1323 18.2	0.969	4	в	0	13.106	13.137	0.085	353.49
2.00	0.0000 12.955 N	316 18.3	0.969	4	в	0	12.940	12.971	0.085	355.71
2.00	0.0000 12.739 N	245 78.4	1.000	3	А	2	12.918	12.937	0.085	350.00
2.00	0.0000 12.570 N	324 14.8	0.960	4	в	0	12.558	12.583	0.085	348.06
2.00	0.0000 12.565 N	249 81.8	0.987	4	А	2	12.812	12.845	0.085	348.46
2.00	0.0000 12.460 N	327 16.9	0.975	5	A	0	12.446	12.475	0.085	348.42

			0	ptvdata	RC	A1[1].t	xt			
2.00	0.0000 12.443	N328	16.9	0.985	5	A	0	12.428	12.457	0.085	349.00
2.00	0.0000 12.440	N179	59.7	1.000	3	Α	2	12,488	12,507	0.085	349.00
2.00	0.0000	N328	17 0	0 988	1	^	-	12 386	12 /15	0.085	349.00
2.00	0.0000	N343	25.0	1 000	т 2	~	2	12.000	12.413	0.005	349.00
2.00	0.0000	NZ43	85.9	1.000	3	A	2	12.873	12.902	0.085	348.68
29	12.358	N332	21.3	0.963	4	В	0	12.340	12.377	0.085	348.25
30 2.00	12.266 0.0000	N337	19.0	0.957	4	В	0	12.249	12.282	0.085	349.39
31	12.163	N165	49.8	0.960	4	В	2	12.116	12.210	0.085	349.00
32	12.124	N006	23.4	0.979	4	Α	0	12.104	12.145	0.085	349.00
33	11.985	N050	32.9	1.000	3	А	2	11.957	11.986	0.085	353.65
34	11.880	N303	19.5	0.961	5	в	0	11.864	11.896	0.085	356.09
2.00	0.0000 11.845	N172	45.7	0.964	4	в	2	11.867	11.886	0.085	351.92
2.00	0.0000 11.823	N307	17.6	0.984	4	А	0	11.808	11.837	0.085	350.13
2.00	0.0000	N297	20.0	0.976	4	Δ	0	11 735	11,769	0 085	348 88
2.00	0.0000	N208	17 /	0 975		~	0	11 660	11 608	0.085	251 50
2.00	0.0000	N290	17.4 CF 2	1 000	4	A	0	11.009	11.090	0.085	331.30
2.00	0.0000	NI33	05.2	1.000	3	A	2	11.597	11.598	0.085	351.52
40	0.0000	N335	12.9	0.995	4	A	2	11.576	11.597	0.085	349.55
41 2.00	11.577 0.0000	N027	68.7	0.978	4	A	2	11.667	11.696	0.085	350.13
42	11.555	N327	14.5	0.976	4	Α	0	11.542	11.567	0.085	351.48
43	11.518	N321	15.2	0.968	5	В	0	11.505	11.531	0.085	350.88
44	11.423	N330	16.4	0.993	5	Α	0	11.408	11.437	0.085	348.65
45	11.419	N003	77.1	1.000	3	A	2	11.200	11.207	0.085	348.31
2.00 46	0.0000	N040	73.6	1.000	3	A	2	11,196	11.215	0.085	340.53
2.00	0.0000 11.332	N323	13.3	0.982	5	A	0	11.320	11.343	0.085	341.98
2.00	0.0000	N330	14.1	0.999	4	А	0	11,282	11,307	0.085	346.72
2.00	0.0000	N184	84 3	1 000	2	^	2	11 510	11 542	0.085	345 45
2.00	0.0000	N275	10.7	0.061	4	D	0	11 020	11 072	0.005	240 44
1.19	0.0000		19.7	0.901	4	D	0	10.079	11.072	0.085	549.44
1.00	0.0000	N323	20.3	0.949	4	в	0	10.970	11.003	0.085	349.19
52 1.00	10.973 0.0000	N158	87.2	1.000	3	A	2	11.575	11.616	0.085	349.46
53 1.54	10.919	N338	18.9	0.979	5	A	0	10.903	10.935	0.085	351.08
54	10.838	N327	19.7	0.948	5	В	2	10.822	10.854	0.085	351.00
55	10.414	N342	5.5	0.985	5	A	2	10.408	10.420	0.085	345.28
56	10.350	N147	81.4	1.000	3	A	2	10.121	10.174	0.085	344.16
57	10.266	N308	16.7	0.996	4	A	0	10.251	10.280	0.085	344.61
2.00	0.0000	N098	81.8	1.000	3	A	2	9.986	10.020	0.085	344.84

1

÷.

2.00	0.0000		op.	crucica i			-110	~~~~			
59	10.252	N150	76.4	1.000	3	A	2	10.122	10.163	0.085	344.88
2.00	0.0000										
60	10.244	N004	56.1	1.000	3	A	2	10.307	10.312	0.085	345.00
2.00	0.0000										
61	10,220	N305	18.0	0.957	5	в	0	10.204	10.235	0.085	345.00
2.00	0.0000				-		•				
62	10.186	N112	88.6	1,000	4	Α	2	10,226	10.307	0.085	344.60
2.00	0.0000					•••	-				
63	10.162	N317	15.6	0.989	4	Α	0	10.148	10,175	0.085	343.62
2.00	0.0000				•	••	•				
64	10.138	N018	73.1	1.000	3	А	2	9,987	10.009	0.085	343.17
2.00	0.0000				-	••	-				
65	10.080	N316	14.7	0.990	4	Α	0	10.067	10.093	0.085	343.68
2.00	0.0000					••	•				
66	10.014	N308	16.2	0.960	5	B	0	10.000	10.027	0.085	343.00
2.00	0.0000	••••			-	_	-				2.2700

optvdata RCA1[1].txt

OPTV DATA PROCESSING RGLDIP vsn 6.2 INTERPRETED OPTV DIPS LOG

15 Oct 2007

IGSL

Borehole: RCA 02

ł

Tarbert/Ballylongford Embankment-Pond Site Investigation

op of boi	rehole
East:	101945
North:	148166
Elev:	7.08

Zone from 18.881 to 2.451m Format: BHTV-NESWN

North ref. is magnetic Depth units are metres Vertical scale: 1/10 Horiz scale = vert scale

Borehole diam: 8.500cm Vertical = borehole-axis

RCA 02

3.974 to 2.451m

Figure OPTV2 (2 of 18)

RCA 02

9.810 to 6.892m

Figure OPTV2 (3 of 18)

RCA 02

12.728 to 9.810m

Figure OPTV2 (4 of 18)

Figure OPTV2 (6 of 18)

ł

.

1

÷

11

1.-

.

•

optvdata RCA02[1].txt

RGLDIPv6.2 OPTV results

K = 0: Feature K = 2: Feature

1

borehole RCA 02 zone from 2.451 to 18.882 m North ref is magnetic Dip format: Dip-azimuth and Dip

محمد المحمد الم							Upper	Lower	Well	Well
Dev	on Depth Azimu Thickness	ıth Dip	1-P0/100	n	Q	K	Depth	Depth	Diam	Azimuth
2 00	18.662 N153	51.1	1.000	3	A	2	18,606	18.608	0.085	121.37
2.00	18.412 N326	5 13.9	0.987	5	А	0	18.403	18.421	0.085	114.69
2.00	18.320 N167	28.9	0.981	4	Α	2	18.295	18.342	0.085	117.80
2.00	18.044 N341	. 13.9	0.997	4	А	0	18.034	18.053	0.085	114.12
2.00	17.873 N325	12.8	0.986	5	А	0	17.864	17.881	0.085	115.86
2.00	17.807 N326	14.8	0.996	6	А	0	17.797	17.817	0.085	114.09
2.00	17.687 N329	12.9	0.993	5	А	0	17.679	17.695	0.085	120.82
2.00	0.0000 17.622 N335	14.7	0.971	4	в	0	17.613	17.632	0.085	120.00
2.00	0.0000 17.400 N325	15.3	0.993	4	А	0	17.390	17.411	0.085	115.91
2.00 10	0.0000 17.269 N326	14.9	0.979	4	A	0	17.259	17.278	0.085	119.45
2.00 11	0.0000 16.965 N054	55.9	1.000	3	A	2	16.900	16.904	0.085	114.23
2.00	0.0000 16.629 N289	74.0	1.000	3	A	2	16.752	16.760	0.085	117.32
2.00 13	0.0000 16.526 N320	14.7	0.980	5	А	0	16.516	16.536	0.085	113.61
2.00 14	0.0000 16.410 N335	12.7	0.975	5	А	0	16.401	16.418	0.085	115.27
2.00 15	0.0000 16.155 N157	12.3	0.956	5	в	2	16.148	16.163	0.085	117.94
2.00 16	0.0000 16.119 N174	58.7	1.000	3	A	2	16.046	16.060	0.085	119.00
2.00 17	0.0000 16.097 N164	50.7	1.000	3	A	2	16.042	16.058	0.085	119.00
2.00 18	0.0000 16.040 N158	61.5	1.000	3	A	2 .	16.107	16.124	0.085	119.23
2.00 19	0.0000 16.011 N157	64.6	0.986	4	А	2	15.977	16.088	0.085	115.16
2.00 20	0.0000 15.975 N333	14.8	0.977	6	A	0	15.965	15.985	0.085	113.42
2.00 21	0.0000 15.838 N333	14.8	0.990	5	A	0	15.828	15.848	0.085	113.49
2.00	0.0000 15.716 N347	15.2	0.968	6	в	0	15.705	15.726	0.085	119.04
2.00 23	0.0000 15.662 N330	14.6	0.986	5	A	0	15.653	15.672	0.085	118.31
2.00 24	0.0000 15.421 N341	15.7	0.944	5	с	0	15.410	15.432	0.085	117.50

2 00	0 0000		ор	tvoata i	RCA	02	T] •]	τχτ			
2.00	15.385	N330	17.1	0.993	4	А	0	15.373	15.396	0.085	117.23
2.00	0.0000	N331	15.3	0.988	5	A	0	15,219	15,240	0.085	120.34
2.00	0.0000	N334	14 5	0 987	5	Λ	0	15 140	15 150	0.085	110 00
2.00	0.0000	4004	14.5	0.307	5	A	0	13.140	T2.T22	0.005	119.00
28	0.0000	N331	16.0	0.972	6	В	0	15.042	15.064	0.085	119.57
29 2.00	14.733	N322	16.8	0.988	5	Α	0	14.721	14.744	0.085	122.40
30	14.673	N345	15.4	0.989	5	А	0	14.662	14.683	0.085	120.34
31	14.509	N350	19.2	0.960	5	В	0	14.496	14.523	0.085	120.00
32	14.312	N330	15.5	0.971	5	в	0	14.302	14.323	0.085	123.67
2.00	0.0000	N329	14.6	0.988	7	A	0	14.290	14.310	0.085	123.92
2.00	0.0000 14.275	N161	84.5	1.000	3	A	2	13.654	13.712	0.085	126.51
2.00	0.0000 14.241	N328	14.9	0.980	5	A	0	14.231	14.251	0.085	129.40
2.00 36	0.0000 14.212	N325	16.1	0.990	4	А	0	14.201	14.223	0.085	125.92
2.00	0.0000 14.195	N338	13.9	0.983	5	A	0	14.186	14.204	0.085	123.95
2.00	0.0000	N336	16.0	0.963	5	B	0	14.026	14.048	0.085	125.82
2.00	0.0000	1093	20.0	1 000	2		2	12 005	14 007	0.005	125.22
2.00	0.0000	NUOZ	29.0	1.000	5	A	2	12.905	14.007	0.085	123.22
40 2.00	13.992	N036	83.3	0.997	4	A	2	13.625	13.728	0.085	124.57
41 2.00	13.980	N330	23.4	1.000	3	A	2	13.965	13.970	0.085	123.40
42	13.959	N015	48.3	1.000	3	Α	2	13.982	14.006	0.085	121.31
43	13.956	N213	26.7	1.000	3	А	2	13.934	13.942	0.085	120.97
44	13.940	N163	4.0	1.000	3	A	2	13.936	13.943	0.085	120.47
45	13.793	N152	37.4	1.000	3	Α	2	13.759	13.763	0.085	120.21
46	13.775	N010	8.6	0.983	4	A	2	13.769	13.781	0.085	121.68
2.00	0.0000 13.766	N254	20.8	1.000	3	A	2	13.771	13.781	0.085	122.44
2.00	0.0000	N333	22.1	1.000	3	А	2	13.778	13.781	0.085	122.43
2.00	0.0000	N312	1/1 3	0 969	٨	R	2	13 775	13 740	0 085	124 24
2.00	0.0000	1074	70.2	1 000	т Э		2	10 710	12 750	0.005	124.00
2.00	0.0000	NU34	70.2	1.000	3	A	2	13./18	13.756	0.085	124.96
51 2.00	13.674 0.0000	N168	46.5	1.000	3	A	2	13.626	13.635	0.085	125.45
52	13.655	N211	15.6	0.917	6	С	2 ·	13.650	13.667	0.085	125.82
53	13.653	N330	12.5	1.000	3	A	2	13.648	13.661	0.085	125.86
54	13.641	N240	22.0	1.000	3	Α	2	13.652	13.657	0.085	125.14
55	13.635	N008	14.0	1.000	3	A	2	13.627	13.639	0.085	124.16
56	13.627	N313	16.5	0.981	4	A	2	13.616	13.631	0.085	122.99
57	13.543	N319	17.2	0.993	5	A	0	13.531	13.554	0.085	120.93
58	13.458	N171	16.6	1.000	3	A	2	13.444	13.448	0.085	123.05

1

			opt	vdata F	RCA	02	[1].t	xt			
2.00	0.0000 13.457	N333	15.4	0.979	5	A	0	13.447	13.468	0.085	123.10
2.00	0.0000	N330	13.8	0.981	5	А	0	13.420	13.438	0.085	124.00
2.00	0.0000	N334	12.0	0.978	5	Δ	0	13,411	13,426	0.085	124.00
2.00	0.0000	N184	83.2	1 000	2	^	2	13 732	13 769	0 085	125 90
2.00	0.0000	NICH	16.2	0.060	و ۲	- -	2	12 770	12 201	0.005	110 70
2.00	0.0000	0000	10.5	0.909	э г	Б	0	12.020	12.000	0.005	122.00
64 2.00	0.0000	N338	14.9	0.992	5	A	0	13.038	13.058	0.085	122.00
65 2.00	13.029 0.0000	N330	15.1	0.990	5	A	0	13.019	13.039	0.085	122.67
66 2.00	12.815 0.0000	N320	13.8	0.995	5	A	0	12.806	12.824	0.085	124.68
67	12.771	N335	15.4	0.992	5	A	0	12.760	12.781	0.085	127.00
68	12.710	N333	14.6	0.991	4	Α	0	12.701	12.720	0.085	126.29
69	12.640	N005	15.2	0.970	5	в	0	12.629	12.650	0.085	127.25
70	12.522	N348	15.6	0.983	5	А	0	12.511	12.532	0.085	128.97
2.00	12.460	N348	14.4	0.992	5	A	0	12.450	12.470	0.085	127.86
2.00	0.0000 12.435	N349	15.1	0.984	4	А	0	12.425	12.446	0.085	127.00
2.00	0.0000 12.372	N142	70.4	1.000	3	A	2	12.488	12.506	0.085	127.47
2.00	0.0000	N342	15.7	0.986	5	A	0	12.343	12,364	0.085	127.85
2.00	0.0000	N344	14.7	0.988	6	А	0	12.320	12.339	0.085	128.66
2.00	0.0000	N332	16 7	0 997	5	Δ	0	12 227	12 250	0 085	127 73
2.00	0.0000	NIDE	75 1	1 000	2	^	2	11 030	11 001	0.085	130 34
2.00	0.0000	NTOD	75.I	1.000	ר ר	A	2	11 410	11 427	0.005	120.12
2.00	0.0000	N14Z	84.5	1.000	5	A	2	11.410	11.437	0.085	130.12
79 2.00	12.078 0.0000	N336	14.1	0.989	6	A	0	12.069	12.088	0.085	131.05
80 2.00	12.069 0.0000	N157	67.2	0.985	4	A	2	11.985	12.179	0.085	131.65
81 2.00	12.063	N341	14.4	0.990	6	A	0	12.053	12.072	0.085	132.00
82	11.980	N188	44.7	1.000	3	A	2	11.937	11.974	0.085	127.95
83	11.978	N248	72.4	1.000	3	Α	2	11.982	12.080	0.085	128.07
84	11.963	N341	14.2	0.990	5	A	0	11.954	11.973	0.085	128.95
85	11.897	N329	15.8	0.987	5	A	0	11.886	11.907	0.085	126.07
2.00	0.0000 11.807	N345	17.0	0.966	4	в	0 ·	11.796	11.819	0.085	130.31
2.00 87	0.0000 11.602	N235	68.5	1.000	3	A	2	11.498	11.536	0.085	126.88
2.00 88	0.0000 11.546	N346	18.5	0.948	5	в	0	11.533	11.559	0.085	127.00
2.00	0.0000 11.543	N191	76.2	1.000	3	A	2	11.358	11.367	0.085	126.90
2.00	0.0000	N173	57.7	1.000	3	A	2	11.388	11.395	0.085	128.70
2.00	0.0000	N347	14.9	0.988	5	Δ	0	11,439	11,460	0.085	129.65
2.00	0.0000	N163	49.8	1 000	2	Δ	2	11 374	11 384	0.085	129 15
36			1010		-	2.3	-				

2 00	0 0000		op	cvdata P	RCAU	2[1]	.txt			
93	11.401	N324	12.6	0.987	5 A	0	11.3 9 3	11.409	0.085	128.21
2.00 94	0.0000 11.350	N328	17.5	0,966	5 B	0	11.338	11.362	0.085	128,00
2.00 95	0.0000	N163	55 3	0 995	ΔΛ	2	11 239	11 251	0 085	126 34
2.00	0.0000	N071	CC 1	0,000		` ~ ~	11 100	*****	0.005	100.07
2.00	0.0000	NOVI	1.00	0.996	4 A	. Z	11.108	11.118	0.085	123.56
97 2.00	11.207 0.0000	N331	13.5	0,980	5 A	0	11.198	11.216	0.085	123,45
98 2_00	11.205	N164	55.5	1.000	3 A	2	11.140	11.271	0.085	123.37
99	11.093	N335	15.1	0.987	4 A	0	11.083	11.103	0.085	122.00
100	11.068	N341	62.5	1.000	3 A	2	11.128	11.142	0.085	122.00
101	11.068	N330	13.7	0.999	5 A	0	11.059	11.077	0.085	122.00
2.00	0.0000	N329	12.9	0.981	5 A	0	11.019	11.036	0.085	122.37
103	10.969	N346	16.7	0.967	5 B	0	10.957	10.981	0.085	123.00
2.00 104	0.0000	N334	11.8	0.986	5 A	0	10.925	10.941	0.085	122.74
2.00	0.0000 10.882	N348	14.2	0.979	5 A	0	10.872	10.892	0.085	122.56
2.00 106	0.0000 10.844	N354	13.1	0.996	4 A	0	10,835	10.853	0.085	123.95
2.00 107	0.0000 10.788	N334	14.0	0.985	5 A	0	10.779	10.797	0.085	123.32
2.00 108	0.0000 10.688	N323	15.3	0.962	4 B	0	10.678	10,699	0.085	124.00
2.00	0.0000	N351	16 5	0 982	 Б л	ñ	10 557	10 580	0 085	125 00
2.00	0.0000	NSVE	17 0	0.975	5 4	. 0	10.001	10.300	0.005	175 66
2.00		, CPCN	17:0 ar a	0,973	JA		10.401	10.423	0.003	123.00
2.00	0.0000	N342	15.1	0.985	5 A	0	10.337	10.357	0.085	125.04
112 2.00	10.255	N349	15.4	0.968	6 B	0	10.245	10.266	0.085	126.82
113 2.00	10.221	N322	16.8	0.985	5 A	0	10.210	10.232	0.085	127.99
114	10.182	N199	87,5	1.000	3 A	2	8.908	8.976	0.085	127.91
115	10.172	N015	12.5	1.000	3 A	2	10.165	10.181	0.085	127.09
116	10.081	N327	16.4	0.978	4 A	0	10,070	10.092	0.085	128.09
2.00 117	0.0000 10.049	N330	14.8	0.991	5 A	0	10.039	10.059	0.085	126.19
2.00 118	0.0000 10.048	N329	32.2	0,995	4 A	2	10.027	10.033	0.085	126.11
2.00	0.0000	N342	16.9	0.997	5 Δ	0	0 038	9 961	0 085	127 07
2.00	0.0000	N220	15.0	0.050		n	- n ost	0.001	0.005	120 11
2.00	0.0000	N320	13.0	0.900	36	0	2.02T	9.030	0.005	129.11
2.00	0.0000	N319	16.5	0.971	4 B	0	9.780	9.802	0.085	129.79
122 2.00	9.707	N334	16.3	0.945	4 C	0	9.696	9.718	0.085	130.35
123 2.00	9,631	N332	14.2	0.993	5 A	0	9,622	9.641	0.085	129.59
124	9.500	N334	12.4	1.000	4 A	0	9,492	9.508	0.085	129.00
125	9.328	N337	13.9	0.990	4 A	0	9,319	9,338	0.085	127.94
126	9,298	N338	14.9	0.977	5 A	0	9.288	9.308	0.085	126.12

11

*

				optvdata	RCA	02	[1]	.txt			
2.00	0.0000 9.156	N325	16.6	0.975	5	A	0	9.145	9.167	0.085	128.20
128	9.130	N328	16.9	0.970	5	в	0	9.119	9.142	0.085	128.00
129	9.058	N126	77.3	1.000	3	Α	2	8.833	8.974	0.085	128.00
130	8.967	N339	14.7	0.987	5	Α	0	8.958	8.977	0.085	127.14
131	8.963	N011	3.8	0.990	4	Α	2	8.962	8.966	0.085	127.31
132	8.859	N130	82.7	1.000	3	Α	2	8.404	8.437	0.085	127.00
133	8.849	N324	14.9	0.991	5	А	0	8.839	8.858	0.085	127.00
134	8.809	N095	82.5	1.000	3	Α	2	8.394	8.451	0.085	127.00
135	8.785	N081	74.7	1.000	3	Α	2	8.854	8.907	0.085	127.00
136	8.711	N319	19.9	1.000	3	А	2	8.697	8.703	0.085	127.71
137	8.601	N305	6.6	0.991	4	A	2	8.603	8.605	0.085	127.21
138	8.597	N327	19.4	0.987	4	А	2	8.583	8.608	0.085	127.02
139	8.551	N352	18.1	0.974	4	Α	0	8.539	8.564	0.085	127.89
140	8.510	N358	13.4	0.989	4	А	0	8.501	8.519	0.085	127.28
141	8.445	N336	11.9	0.973	5	A	0	8.437	8.453	0.085	127.98
142	8.404	N342	70.8	1.000	3	А	2	8.293	8.302	0.085	127.17
143	8.388	N002	20.5	1.000	3	Α	2	8.390	8,403	0.085	126.68
144	8.323	N352	33.3	1.000	3	Α	2	8.297	8.304	0.085	125.45
145	8.304	N322	16.4	1.000	3	A	2	8.304	8.312	0.085	125.85
146	8.255	N325	15.7	0.985	4	A	0	8.244	8.265	0.085	126.00
147	8.232	N321	30.1	1.000	3	Α	2	8.209	8.217	0.085	125.42
148	8.203	N334	13.1	0.990	4	А	0	8.195	8.212	0.085	124.29
149	8.145	N337	15.1	0.971	4	в	0	8.135	8.156	0.085	126.00
150	8.114	N334	12.2	0.987	4	А	0	8.106	8.122	0.085	126.00
151	8.037	N353	15.2	1.000	3	Α	0	8.027	8.048	0.085	125.66
152	8.007	N351	18.3	0.970	4	в	2	7.994	8.020	0.085	124.44
153	7.937	N012	34.4	1.000	3	A	2	7.909	7.933	0.085	125.17
154	7.930	N329	14.4	1.000	3	Α	2 ·	7.922	7.938	0.085	125.31
155	7.871	N037	46.2	1.000	3	Α	2	7.827	7.831	0.085	125.51
156	7.841	N294	22.1	1.000	3	Α	2	7.826	7.831	0.085	124.91
157	7.833	N272	75.4	1.000	3	A	2	7.688	7.691	0.085	124.74
158	7.760	N319	25.1	0.990	4	A	2	7.742	7.749	0.085	124.00
159	7.743	N324	18.3	0.980	5	A	0	7.730	7.755	0.085	124.07
160	7.695	N036	11.5	1.000	3	A	2	7.688	7.698	0.085	125.00

200	1.15-2.10.			optvdata	RCA	02	[1]	.txt			
2.00	0.0000	N330	14.6	0.996	5	А	0	7.674	7.694	0.085	125.00
2.00	0.0000	N333	13.6	0.997	5	A	0	7.647	7.665	0.085	125.00
163	7.587	N318	12.9	0.979	4	А	0	7.578	7.595	0.085	124.19
164	7.561	N028	48.7	1.000	3	Α	0	7.609	7.609	0.085	124.69
165	7.557	N344	10.6	0.969	6	в	0	7.550	7.564	0.085	124.78
166	7.525	N296	20.1	0.992	4	Α	2	7.511	7.515	0.085	123.75
167	7.501	N312	45.5	1.000	3	Α	2	7.461	7.468	0.085	122.30
168	7.491	N309	11.2	0.972	5	в	0	7.484	7.497	0.085	122.44
169	7.447	N294	25.8	1.000	3	Α	2	7.428	7.433	0.085	125.94
170	7.421	N337	15.4	0.962	4	в	0	7.411	7.432	0.085	125.50
171	7.362	N058	28.8	1.000	3	А	2	7.376	7.385	0.085	124.33
172	7.356	N328	11.8	0.958	4	в	0	7.348	7.363	0.085	124.19
173	7.338	N109	36.0	1.000	3	Α	2	7.305	7.308	0.085	124.00
174	7.294	N340	15.4	0.953	6	В	0	7.283	7.304	0.085	124.05
175	7.250	N013	9.1	1.000	3	A	2	7.247	7.253	0.085	124.91
176	7.242	N329	24.0	1.000	3	Α	2	7.254	7.259	0.085	125.08
177	7.201	N350	19.6	0.993	4	Α	2	7.187	7.195	0.085	125.90
178	7.189	N338	18.3	0.957	4	в	0	7.176	7.202	0.085	125.72
179	7.161	N311	17.1	0.946	5	С	2	7.150	7.173	0.085	124.61
180	7.114	N276	15.7	1.000	3	A	2	7.113	7.125	0.085	123.37
181	7.106	N000	10.8	1.000	4	A	2	7.099	7.113	0.085	123.21
182	7.071	N350	14.3	1.000	3	A	2	7.061	7.080	0.085	123.50
183	7.012	N328	52.5	1.000	3	A	2	6.960	6.975	0.085	123.31
184	6.994	N347	17.0	0.992	4	A	2	6.982	7.006	0.085	123.08
185	6.934	N254	51.8	1.000	3	A	2	6.882	6.899	0.085	125.00
186	6.905	N345	12.0	0.990	5	A	0	6.897	6.912	0.085	125.00
187	6.904	N108	29.9	1.000	3	A	2	6.877	6.885	0.085	125.00
188	6.892	N335	37.7	1.000	3	A	2 .	6.861	6.879	0.085	125.00
189	6.842	N021	19.1	1.000	3	A	2	6.856	6.856	0.085	124.75
190 2.00	6.828	N031	5.6	1.000	3	A	2	6.826	6.832	0.085	123.90
191 2.00	6.823	N298	24.1	1.000	3	A	2	6.831	6.840	0.085	123.61
192 2.00	6.793	N343	13.0	0.975	5	A	2	6.784	6.802	0.085	121.82
193	6.456	N313	14.0	0.983	4	A	0	6.447	6.465	0.085	124.38
194	6.399	N310	16.6	0.999	4	A	0	6.388	6.410	0.085	121.06

					optvdata	RCA	02	[1]	.txt			
2.00 195		0.0000	N112	64.1	1.000	3	A	2	6.290	6.306	0.085	121.41
2.00 196		0.0000	N260	72.0	1.000	3	А	2	6.221	6.230	0.085	123.00
2.00		0.0000	N300	15.0	0.997	4	A	2	6.293	6.308	0.085	123.00
2.00 198		0.0000	N302	58.7	0.986	4	A	2	6.229	6.251	0.085	122.94
2.00 199		0.0000 6.246	N340	9.2	1.000	3	А	2	6.240	6.251	0.085	122.01
2.00 200		0.0000	N111	21.1	0.956	8	в	2	6.207	6.217	0.085	122.42
2.00 201		0.0000	N332	13.5	0.968	6	в	2	6.199	6.216	0.085	122.76
2.00 202		0.0000 6.195	N191	71.9	1.000	3	A	2	6.058	6.069	0.085	123.00
2.00 203		0.0000 6.185	N066	55.8	1.000	3	А	2	6.245	6.250	0.085	123.00
2.00 204		0.0000 6.165	N320	12.2	0.980	4	А	0	6.157	6.173	0.085	123.00
2.00 205		0.0000 6.161	N296	79.2	1.000	3	А	2	6.313	6.349	0.085	123.00
2.00 206		0.0000 6.137	N349	46.4	0.982	4	A	2	6.094	6.135	0.085	122.82
2.00 207		0.0000 6.137	N102	65.8	1.000	3	A	2	6.034	6.074	0.085	122.83
2.00 208		0.0000 6.131	N353	54.3	1.000	4	А	2	6.075	6.187	0.085	122.70
2.00 209		0.0000 6.131	N360	53.0	1.000	3	A	2	6.077	6.083	0.085	122.70
2.00 210		0.0000 6.126	N327	46.9	0.999	4	А	2	6.083	6.106	0.085	122.59
2.00 211		0.0000 6.119	N212	55.1	1.000	3	A	2	6.058	6.066	0.085	122.45
2.00 212		0.0000 6.115	N151	60.1	0.984	4	A	2	6.164	6.194	0.085	122.38
2.00 213		0.0000 6.110	N184	8.5	1.000	3	А	2	6.103	6.109	0.085	122.28
2.00 214		0.0000 6.108	N062	31.6	1.000	3	А	2	6.121	6.135	0.085	122.23
2.00 215	•	0.0000 6.106	N005	13.6	1.000	3	А	2	6.097	6.115	0.085	122.20
2.00 216		0.0000 6.102	N144	60.5	0.998	4	А	2	6.021	6.032	0.085	122.12
2.00 217		0.0000 6.102	N270	41.0	1.000	3	А	2	6.091	6.102	0.085	122.11
2.00 218		0.0000 6.061	N188	20.0	1.000	3	A	2	6.045	6.051	0.085	122.00
2.00 219		0.0000 6.035	N025	32.1	1.000	3	А	2	6.009	6.030	0.085	122.00
2.00 220		0.0000 5.979	N030	12.9	0.976	5	A	2	5.969	5.989	0.085	122.00
2.00 221		0.0000 5.939	N007	27.6	1.000	3	A	2	5.918	5.935	0.085	122.13
2.00 222		0.0000 5.913	N127	29.6	0.994	4	A	2 ·	5.886	5.900	0.085	122.67
2.00 223		0.0000 5.888	N081	41.9	0.996	4	A	2	5.903	5.928	0.085	123.00
2.00 224		0.0000 5.887	N073	21.4	0.943	5	с	0	5.869	5.905	0.085	123.00
2.00 225		0.0000 5.841	N043	10.7	0.994	7	A	0	5.833	5.850	0.085	123.00
2.00		0.0000	N341	39.8	1.000	3	А	2	5.685	5.688	0.085	121.45
2.00		0.0000	N326	75.1	1.000	3	A	2	5.573	5.577	0.085	121.37
2.00 228		0.0000 5.649	N345	10.6	0.989	5	А	0	5.642	5.656	0.085	125.72

.

÷

2		2	0	ptvdata	RC	A02	[1]	.txt			
2.00	0.0000) N348	19.2	1.000	3	A	2	5.511	5.535	0.085	122.00
2.00 230	0.0000) N181	84.4	1.000	3	A	2	4.936	4.958	0 085	123 66
2.00	0.0000	N006	12 1	0 982			0	5 121	5 151	0.005	125.00
2.00	0.0000	1000	22.5	1.000	-	A	0	5.454	5.451	0.085	125.01
2.00	0.0000	N348	22.0	1.000	.3	A	2	5.393	5.404	0.085	121.33
233 2.00	5.399	N340	16.0	1.000	3	A	2	5.388	5.392	0.085	120.42
234 2.00	5.361 0.0000	N355	11.0	0.994	4	A	0	5.354	5.369	0.085	118.62
235	5.327	N350	12.5	0.980	4	A	0	5.319	5.336	0.085	118.75
236	5.284	N025	32.3	1.000	3	Α	2	5.257	5.265	0.085	120.00
237	5.273	N345	18.9	1.000	3	A	2	5.271	5.286	0.085	120.00
238	5.269	N186	24.7	1.000	3	A	2	5.249	5.254	0.085	120.00
2.00 239	0.0000 5.265	N036	25.5	1.000	3	A	2	5.257	5.272	0.085	120.00
2.00 240	0.0000	N087	85.8	1,000	3	Δ	2	6 136	6 199	0 085	120.00
2.00	0.0000	N274	70 7	1 000	2	^	2	E 01E	E 0E2	0.005	120.00
2.00	0.0000	N244	12.4	0.001	ר ר	~	2	5.015	5.055	0.005	120.00
2.00	0.0000	N344	13.4	0.991	5	A	0	5.204	5.222	0.085	120.00
243	0.0000	N181	72.2	1.000	3	A	2	5.058	5.096	0.085	120.00
244 2.00	5.153 0.0000	N346	14.2	0.979	5	A	0	5.143	5.163	0.085	120.86
245	5.133	N334	46.6	1.000	3	A	2	5.091	5.095	0.085	120.74
246	5.122	N330	17.2	0.997	4	Α	2	5.111	5.114	0.085	120.53
247	5.097	N187	44.0	1.000	3	А	2	5.065	5.108	0.085	120.03
248	5.093	N072	76.3	1.000	3	A	2	5.268	5.286	0.085	120.26
2.00 .	0.0000	N328	14.5	0.988	4	A	0	5.076	5.095	0.085	120.86
2.00 250	0.0000 5.061	N238	15.7	1.000	3	А	2	5.050	5.055	0.085	122 78
2.00	0.0000	N184	4.5	0 966	5	R	2	4 981	1 989	0 085	120 22
2.00	0.0000	N146	18 5	0.005	1		2	4.000	4.909	0.005	120.22
2.00	0.0000	N140	40.5	1.000	4	A	2	4.920	4.957	0.085	120.37
2.00	4.956	NT33	5.7	1.000	3	A	2	4.954	4.962	0.085	120.79
254 2.00	4.898	N294	13.9	0.973	4	A	0	4.889	4.907	0.085	123.90
255 2.00	4.808	N278	26.8	1.000	3	A	2	4.788	4.810	0.085	120.70
256	4.789	N218	22.3	1.000	3	A	2	4.798	4.806	0.085	120.14
257	4.784	N230	5.7	0.990	4	А	2	4.784	4.788	0.085	120.24
258	4.782	N322	31.8	1.000	3	А	2	4.791	4.807	0.085	120.28
259	4.733	N243	80.6	1.000	3	A	2	4.905	4.962	0.085	121.00
2.00 260	0.0000 4.721	N103	80.9	1.000	3	A	2	4.892	4.989	0.085	121.00
2.00 261	0.0000 4.713	N357	37.7	1.000	3	A	2	4,681	4,702	0.085	121.00
2.00 262	0.0000	N176	83.3	1.000	3	Δ	2	4,278	4 332	0 085	121 00
		··-· ·			-	1.1	-	112/0	1.225	0.005	TTT.00

1

1 The o

.

				optvdata	RCA	02	[1]	.txt			
2.00	0.0000 4.700	N347	12.1	1.000	3	A	2	4.701	4.708	0.085	121.00
2.00	4.697	N317	22.4	1.000	3	A	2	4.686	4.701	0.085	121.00
265	4.691	N026	25.2	1.000	3	Α	2	4.690	4.711	0.085	121.00
266	4.598	N345	16.2	0.945	·5	с	0	4.586	4.609	0.085	116.17
267	4.576	N350	10.9	0.984	4	Α	2	4.568	4.583	0.085	117.23
268	4.575	N323	10.3	0.997	4	Α	2	4.577	4.581	0.085	117.27
269	4.549	N345	14.6	0.975	4	Α	0	4.539	4.559	0.085	118.83
270	4.504	N150	71.2	1.000	3	А	2	4.385	4.421	0.085	119.00
271	4.484	N033	32.0	0.990	4	А	2	4.458	4.471	0.085	119.00
272	4.469	N158	76.3	1.000	3	Α	2	4.271	4.283	0.085	119.00
273	4.454	N149	60.5	1.000	3	А	2	4.373	4.428	0.085	119.00
274	4.428	N063	66.3	1.000	3	А	2	4.478	4.530	0.085	118.29
275	4.425	N304	43.6	1.000	3	А	2	4.448	4.462	0.085	118.14
276	4.376	N116	71.8	1.000	3	A	2	4.230	4.268	0.085	117.80
277	4.329	N280	7.4	0.980	4	Α	2	4.325	4.331	0.085	118.01
278	4.328	N006	77.4	1.000	3	Α	2	4.149	4.175	0.085	117.91
279	4.247	N307	37.2	1.000	3	Α	2	4.270	4.277	0.085	116.98
280	4.241	N058	40.8	1.000	3	Α	2	4.275	4.279	0.085	116.82
281	4.196	N206	68.0	1.000	3	Α	2	4.281	4.301	0.085	115.01
282	4.167	N331	12.0	1.000	3	A	2	4.165	4.175	0.085	115.57
283	4.121	N085	19.5	1.000	3	Α	2	4.131	4.136	0.085	116.51
284	4.091	N091	45.7	1.000	3	A	2	4.045	4.061	0.085	116.81
285	4.065	N175	61.6	1.000	3	A	2	4.093	4.141	0.085	115.78
286	4.063	N006	9.3	1.000	3	A	2	4.065	4.068	0.085	115.67
287	4.056	N097	1.3	1.000	3	A	2	4.054	4.058	0.085	115.38
288	4.010	N173	58.9	1.000	3	A	2	3.936	3.948	0.085	118.64
289	3.990	N264	54.4	1.000	3	A	2	3.934	3.960	0.085	119.38
290	3.966	N358	34.4	1.000	3	A	2 .	3.938	3.952	0.085	117.03
291 2.00	3.958	N115	11.1	1.000	3	A	2	3.949	3.954	0.085	116.25
292	3.935	N285	10.2	1.000	3	A	2	3.929	3.936	0.085	115.43
293	3.909	N001	72.7	1.000	3	A	2	3.780	3.788	0.085	116.47
294	3.753	N358	16.8	0.975	4	A	0	3.741	3.765	0.085	115.14
295	3.741	N357	18.4	0.996	4	A	0	3.727	3.754	0.085	115.22
296	3.729	N009	16.8	0.970	5	в	0	3.717	3.742	0.085	115.67

2.116			op	otvdata I	RC	A02	[1].t	xt			
2.00 297	0.0000 3.710) N262	85.0	1.000	3	A	2	3.346	3.464	0.085	116.43
2.00 298	0.0000 3.687) N346	18.0	0.988	4	A	0	3.674	3.700	0.085	116.63
2.00 299	0.0000 3.685) N133	65.3	1,000	3	A	2	3.773	3.786	0.085	116.54
2.00 300	0.0000	N347	22.5	1.000	.3	Δ	0	3.647	3 680	0 085	115 71
2.00	0.0000	N225	71 2	1 000	2	•	2	3 547	3 540	0.005	115 67
2.00	0.0000	N3/1	10.7	0.076	1	•	2	2 627	3.549	0.085	115.07
2.00	0.0000	NJ41	19.7	1.000	4	A	0	3.627	3.055	0.085	115.29
2.00	0.0000	N142	51.5	1.000	3	A	2	3.538	3.555	0.085	116.41
304	3.600	N215	/8.6	0.993	5	A	2	3.738	3.807	0.085	117.75
305 2.00	3.551 0.0000	N343	18.1	0.991	4	A	0	3.538	3.564	0.085	117.10
306 2.00	3.543	N140	75.0	1.000	3	Α	2	3.362	3.452	0.085	116.93
307	3.539	N049	85.3	1.000	3	A	2	4.078	4.133	0.085	116.86
308	3.531	N338	45.1	1.000	3	Α	2	3.491	3.499	0.085	116.71
309	3.498	N035	28.0	1.000	3	А	2	3.503	3.521	0.085	116.05
310	3.484	N060	89.7	1.000	3	A	2	0.608	0.716	0.085	116.00
2.00	0.0000 3.460	N341	30.3	0.977	4	A	2	3.437	3.460	0.085	116.00
2.00 312	0.0000 3.451	N090	44.3	1.000	3	A	2	3,408	3.450	0.085	116.00
2.00 313	0.0000 3.451	N219	51.2	1.000	3	Α	2	3,491	3,503	0.085	116 00
2.00	0.0000	N289	11.7	1 000	3	Δ	2	3 437	3 441	0 085	116 00
2.00	0.0000	N202	80.9	0 995	1	^	2	3 646	3 682	0.005	116.00
2.00	0.0000	N241	20.0	0.000	т г	~	2	2,220	3.002	0.005	110.00
2.00	0.0000	N341	20.0	0.960	2	A	0	3.330	3.360	0.085	118.88
2.00	0.0000	N324	12.7	0.962	6	В	0	3.281	3.297	0.085	113.00
2.00	3.260	N338	12.5	0.989	4	A	0	3.251	3.268	0.085	113.00
319 2.00	3.242	N336	13.2	0.982	4	A	0	3.233	3.251	0.085	113.17
320 2.00	3.224	N335	13.7	0.988	5	A	0	3.215	3.233	0.085	113.88
321	3.217	N004	79.5	1.000	3	Α	2	3.002	3.050	0.085	114.14
322	3.203	N336	16.7	0.978	4	Α	0	3.192	3.215	0.085	114.71
323	3.184	N335	14.6	0.994	4	А	0	3.174	3.194	0.085	115.24
324	3.133	N339	11.9	0.982	4	A	0 .	3.125	3.141	0.085	114.74
325	3.108	N336	14.7	0.996	4	A	0	3.098	3.118	0.085	112.18
2.00 326	0.0000 3.059	N342	7.4	0.944	5	с	0	3.054	3.064	0.085	109.52
2.00 327	0.0000 2.844	N031	11.2	1.000	3	A	2	2.848	2.853	0.085	113.93
2.00 328	0.0000 2.835	N315	31.8	1.000	3	A	2	2.837	2.860	0.085	113.57
2.00 329	0.0000	N184	76.2	1.000	3	Δ	2	2.637	2.716	0 085	112 91
2.00	0.0000	N099	12.7	1.000	3	Δ	- 2	2 812	2 823	0 085	112 68
a manuf					-	22.1			~. OLJ	2.001	TTC . 00

2

				a second a second		~~		Sector of			
2 00	0 0000			optvdata	RCA	02	[1].	txt			
331	2.811	N154	48.0	1.000	3	A	2	2.840	2.860	0.085	112.58
332	2.802	N159	64.9	1.000	3	A	2	2.786	2.899	0.085	112.23
333	2.802	N139	16.9	1.000	3	A	2	2.791	2.809	0.085	112.24
334	2.781	N177	73.2	0.984	.4	A	2	2.632	2.787	0.085	112.58
335 2.00	2.747	N334	33.1	1.000	3	A	2	2.720	2.736	0.085	113.98
336 2.00	2.743	N005	30.6	1.000	3	A	2	2.756	2.766	0.085	113.81
337 2.00	2.703 0.0000	N248	27.7	1.000	3	A	2	2.700	2.724	0.085	111.39
338 2.00	2.691 0.0000	N255	5.6	1.000	3	A	2	2.689	2.694	0.085	110.90
339 2.00	2.680 0.0000	N157	72.8	0.989	4	A	2	2.598	2.791	0.085	110.69
340 2.00	2.587 0.0000	N336	16.3	0.986	5	A	0	2.575	2.598	0.085	110.81
341 2.00	2.246 0.0000	N092	83.9	1.000	3	A	2	2.717	2.812	0.085	110.00
342 2.00	0.848 0.0000	N090	87.7	0.981	4	A	2	6.285	6.436	0.085	110.00
					_						

.

.

'n

1.-

⁽¹ of 12)

Figure OPTV3 (3 of 12)

15.576 to 12.658m

Figure OPTV3 (4 of 12)

1.-

RGLDIPv6.2 OPTV results

K = 0: FEATURE
K = 2: FEATURE

1

borehole RCA 3 zone from 5.299 to 17.658 m North ref is magnetic Dip format: Dip-azimuth and Dip

doviat	ion						Upper	Lower	Well	Well
Dev	Depth Az Thickness	imuth Dip	1-P0/100	n	Q	к	Depth	Depth	Diam	Azimuth
1	17.567 N	323 18.2	0.983	5	A	0	17.551	17.583	0.085	309.16
2.00	0.0000 17.456 N	314 20.7	0.967	4	в	0	17.439	17.474	0.085	308.79
2.00	0.0000 17.337 N	320 17.3	0.968	4	в	0	17.322	17.352	0.085	308.81
2.00	0.0000 17.302 N	323 19.4	0.949	5	в	0	17.286	17.319	0.085	308.12
2.00	0.0000 17.268 N	318 18.8	0.955	5	в	0	17.252	17.284	0.085	308.56
2.00	0.0000 17.254 N	323 17.6	0.995	5	А	0	17,239	17.269	0.085	308.85
2.00	0.0000 17.169 N	328 18.7	0.981	4	Α	0	17.153	17.184	0.085	307.45
2.00	0.0000 17.088 N	327 17.4	0.988	5	A	0	17.073	17.103	0.085	308.16
2.00	17.060 N	318 18.9	0.979	5	А	0	17.043	17.076	0.085	308.73
10	16.984 N	328 17.9	0.972	5	в	0	16.969	17.000	0.085	308.00
11	16.962 N	328 17.5	0.984	4	Α	0	16.947	16.977	0.085	308.00
12	16.872 N	330 18.0	0.984	5	Α	0	16.856	16.887	0.085	307.51
13	16.850 N	320 19.2	0.979	5	А	0	16.833	16.866	0.085	307.08
14	16.562 N	314 15.0	0.962	5	в	0	16.549	16.574	0.085	306.31
15	16.400 N	328 17.3	0.996	6	Α	0	16.386	16.415	0.085	308.00
16	16.366 N	321 22.6	0.999	4	A	2	16.347	16.360	0.085	308.60
17	16.267 N	179 80.3	1.000	3	Α	2	16.466	16.486	0.085	309.00
18	16.234 N	299 30.8	1.000	3	Α	2 ·	16.207	16.208	0.085	309.47
19	16.001 N	240 43.9	1.000	3	А	2	15.959	15.960	0.085	310.39
20	15.974 N	326 18.4	0.978	6	А	0	15.959	15.990	0.085	309.14
21	15.928 N	357 10.2	0.992	4	А	2	15.930	15.936	0.085	309.83
22	15.860 N	324 14.8	0.954	7	в	0	15.847	15.872	0.085	311.54
23	15.698 N	322 19.2	0.999	5	Α	0	15.681	15.714	0.085	310.90
24	15.537 N	323 16.0	0.985	5	Α	0	15.524	15.551	0.085	307.23

2 00	0 0000		Dn	_RCA_30	μενε	lat	a.t.	XC			
25	15.469	N321	16.9	0.982	7 A	•	0	15.455	15.484	0.085	311.40
26	15.454	N322	16.7	0.981	7 A	•	0	15.439	15.468	0.085	310.45
27	15.357	N326	17.7	0.968	7 E	\$	0	15.342	15.372	0.085	308.44
28	15.334	N324	15.9	0.985	7 A	۱.	0	15.321	15.348	0.085	309.16
2.00	0.0000 15.317	N333	17.4	0.984	5 A		0	15.302	15.331	0.085	310.94
2.00	0.0000	N331	18.2	0.983	6 A	k I	0	15,201	15.232	0.085	305.18
2.00 31	0.0000 15.208	N060	77.8	1.000	3 A		2.	15.364	15.391	0.085	305.52
2.00	0.0000 15.178	N325	22.0	0.992	6 A		0	15.159	15,197	0.085	307.07
2.00	0.0000 15.151	N329	19.4	0.997	5 A		0	15.135	15.168	0.085	308.68
2.00 34	0.0000 15.135	N329	19.6	0.994	5 A		0	15.118	15,152	0.085	309.43
2.00 35	0.0000 15.080	N332	21.0	0.997	5 A		0	15.062	15.098	0.085	309.10
2.00 36	0.0000 15.056	N329	20.6	0.973	5 A	. 1	0	15.038	15.073	0.085	306.16
2.00 37	0.0000 15.025	N326	19.6	0.982	5 A	. 1	0	15.008	15.042	0.085	305.00
2.00 38	0.0000 14.960	N127	82.3	0.989	4 A		2	14.928	15.035	0.085	306.43
2,00 39	0.0000 14.948	N340	22.2	0.966	5 B	; (0	14.929	14,967	0.085	306.93
2.00 40	0.0000 14.897	N326	17.3	0.977	6 A		0	14.882	14.911	0.085	307.00
2.00 41	0.0000 14,756	N327	15.5	0.990	6 A		0	14.743	14.769	0.085	305.00
2.00 42	0.0000 14.720	N325	17.9	0.990	б А	. 1	0	14.705	14.735	0.085	306.61
2.00 43	0.0000 14.652	N326	15.7	0.984	6 A		0	14.638	14.665	0.085	306.33
2.00	0.0000	N167	64.7	0.966	5 B		2	14.546	14.715	0.085	305.69
2,00	0.0000	N146	62.6	1.000	3 A		2	14-668	14.687	0.085	305.31
2.00	0.0000 14.603	N320	17.8	0.982	5 A	. (- 0	14.587	14.618	0.085	305.13
2.00	0.0000	N322	17.9	0.982	6 A	. (n	14.504	14.535	0.085	303.27
2.00	0.0000	N324	16.5	0.972	6 R		n	14.483	14.511	0 085	300 11
2.00	0.0000	N332	16.0	0.985	5 A	(n	14.466	14 493	0.085	301 00
2.00	0.0000	N157	66.3	0.953	4 R		2	14, 383	14, 563	0 085	201 28
2.00	0.0000	N327	17.2	0.979	. р 6 д	í	n	14.444	14 474	0.085	302.30
2.00	0.0000	N327	16.0	0 979	5 A		o î	14 411	14 438	0.005	300 42
2.00	0.0000	N322	18.0	0.992	4 Δ	6	a	14.355	14.386	0.085	206 40
2.00	0.0000	N324	17.6	0.982	5 Δ	r	y n	14 237	14 267	0.085	290.49
2.00	0.0000	N320	15.5	0.976	4 4	ć	้า	14 161	14 188	0.085	200.70
2.00	0.0000	N308	11.9	0.963	5 R		л Г	14_075	14,006	0.085	207.70
2.00	0.0000	N307	16.9	0.953	4 P	r	-)	14.074	14.053	0.085	202 54
2.00	0.0000	N300	19.1	0.999	4 A	1	,)	13.929	13,961	0. 085	289 02
		1. The second		and a second of	- A	•	-	أقو سكرافته كالمحمد	and the second second	မ ေန ၾကားမ်ား	and the second second

N

*

			BH	_RCA_3o	ptv	vda	ta.t	xt			
2.00	0.0000 13.914	N325	15.6	0.977	7	A	0	13.900	13.927	0.085	289.65
2.00 60	0.0000 13.890	N321	18.2	0.982	5	A	0	13.875	13.906	0.085	289.44
2.00 61	0.0000 13.800	N301	14.9	0.962	5	в	0	13.787	13.814	0.085	287.74
2.91	0.0000	N151	61.7	1,000	4	Δ	2	13,680	13,694	0.085	288.00
2.15	0.0000	N284	16.0	0 989	5	Δ	0	13 638	13 666	0 085	293 24
2.12	0.0000	N280	10.0	0.909	5	~	0	12 550	13 502	0.085	201 87
2.41	0.0000	N200	70.1	1 000	2	A	0 2	12 454	12 407	0.005	291.07
3.00	0.0000	0010	10.1	1.000	2	A	2	12.402	13.497	0.085	292.75
66 3.00	0.0000	N284	19.1	0.957	6	В	0	13.483	13.518	0.085	289.60
67 2.30	13.411 0.0000	N304	19.0	0.975	6	A	0	13.395	13.428	0.085	291.12
68 2.13	13.389 0.0000	N305	21.4	0.969	5	В	0	13.371	13.408	0.085	289.13
69 2.71	13.361	N311	19.8	0.970	6	В	0	13.343	13.378	0.085	289.71
70	13.300	N321	18.4	0.958	6	В	0	13.284	13.317	0.085	295.51
71	13.206	N310	19.8	0.979	5	A	0	13.189	13.223	0.085	297.81
72	13.177	N294	21.8	0.950	5	в	0	13.158	13.196	0.085	298.00
73	13.102	N321	19.2	0.967	5	в	0	13.085	13.119	0.085	292.78
2.87	0.0000	N319	21.1	0.965	5	в	0	13.033	13.069	0.085	296.51
2.10 75	0.0000	N320	17.9	0.965	6	в	0	12.989	13.020	0.085	298.65
2.00 76	0.0000 12.973	N310	19.5	0.969	5	в	0	12.956	12.989	0.085	299.00
2.00	0.0000 12.933	N317	20.7	0.976	5	A	0	12.915	12.950	0.085	299.54
2.00	0.0000	N321	21.0	0.975	6	A	0	12.886	12,921	0.085	300.70
2.00	0,0000	N322	19.6	0.966	5	B	0	12.828	12.861	0.085	299.12
2.00	0.0000	N336	19 4	0 964	4	R	0	12 748	12 780	0 085	304 92
2.00	0.0000	N200	18 2	1 000	2	^	2	12 725	12 748	0.085	306 33
2.00	0.0000	N271	10.3	1.000	2	A	2	12.723	12.740	0.005	200.33
2.00	0.0000	N271	10.0	1.000	э г	A	2	12.373	12.500	0.085	300.02
2.00	0.0000	N320	19.6	0.977	2	A	0	12.058	12.692	0.085	308.17
84 2.00	12.657	N313	20.4	0.986	6	A	0	12.640	12.675	0.085	307.46
85 2.00	12.596 0.0000	N352	21.0	0.956	5	В	0	12.578	12.613	0.085	307.98
86 2.00	12.535 0.0000	N334	17.2	0.998	4	A	0 ·	12.520	12.549	0.085	306.68
87 2.00	12.496	N318	21.8	0.987	5	A	0	12.477	12.515	0.085	308.99
88	12.457	N320	20.9	0.974	5	A	0	12.439	12.475	0.085	309.78
89	12.346	N310	27.2	0.939	6	С	0	12.322	12.370	0.085	306.00
90	12.286	N314	21.1	0.986	4	Α	0	12.268	12.304	0.085	306.39
91	12.245	N313	21.9	0.951	5	в	0	12.226	12.263	0.085	308.03
92	12.242	N291	12.5	1.000	3	A	2	12.237	12.244	0.085	308.08

			BH.	_RCA_3o	ptvda	ata.t	xt			
2.00 93	0.0000 12.164	N152	82.4	1.000	3 A	2	11.907	11.967	0.085	306.47
2.00 94	0.0000 12.114	N124	77.2	1.000	3 A	2	12.259	12.275	0.085	305.63
2.00 95	0.0000 12.094	N323	20.1	0.975	5 A	0	12.077	12.111	0.085	305.96
2.00 96	0.0000 12.087	N150	65.3	1.000	3 A	2	12.127	12.172	0.085	305.82
2.00 97	0.0000 12.076	N304	17.5	1.000	3 A	2	12.083	12.091	0.085	305.59
2.00 98	0.0000 12.054	N319	21.4	0.939	5 C	0	12.036	12.073	0.085	305.17
2.00	0.0000 12.014	N145	81.7	1.000	3 A	2	12.227	12.251	0.085	303.72
2.00	0.0000 11.933	N314	19.4	0.978	5 A	0	11.916	11.950	0.085	306.00
2.00 101	0.0000 11.852	N331	15.9	0,990	5 A	0	11.838	11.866	0.085	298.96
2.88	0.0000	N327	18.8	0.975	5 A	0	11.764	11.797	0.085	299.24
2.69	0.0000	N305	16.7	0 984	5 Δ	0	11 724	11 753	0.085	301.69
2.00	0.0000	N312	18 3	0 968	5 R	0	11 704	11 736	0.085	300.96
2.00	0.0000	N317	18 3	0.008	1 1	0	11 650	11 682	0.085	296 99
2.60	0.0000	N226	10.0	0.050	5 0	0	11 607	11 640	0.005	207 73
2.54	0.0000	NJ20	77 0	1 000	2 4	2	11 474	11 //9	0.005	201 00
2.00	0.0000	N150	77.0	1.000	5 A 7 A	2	11 205	11 411	0.005	301.00
2.00	0.0000	NIDO	/9.1	1.000	3 A	2	11,000	11.411	0.005	301.00
2.00	0.0000	NIGI	81.5	0.993	4 A	2	11.524	11.410	0.085	301.00
2.00	0.0000	N334	1/./	0.971	4 B	0	11.547	11.5//	0.085	301.00
111 2.00	11.502	N254	70.3	0.999	4 A	2	11.372	11.385	0.085	293.90
112 2.00	11.490	N333	19.2	0.994	5 A	0	11.474	11.507	0.085	293.67
113 3.00	11.396 0.0000	N322	19.5	0.979	5 A	0	11.379	11.414	0.085	297.01
114 2.66	11.379 0.0000	N279	17.2	1.000	3 A	2	11.383	11.394	0.085	295.28
115 2.00	11.336 0.0000	N064	39.7	1.000	3 A	2	11.357	11.369	0.085	292.00
116 2.00	11.326	N097	54.8	0.991	4 A	2	11.270	11.382	0.085	292.00
117	11.318	N067	46.9	1.000	3 A	2	11.291	11.332	0.085	292.00
118	11.302	N057	37.6	1.000	3 A	2	11.320	11.333	0.085	292.00
119	11.010	N325	17.1	0.975	5 A	0	10.995	11.024	0.085	296.28
120	10.974	N325	14.2	0.993	4 A	0 ·	10.962	10.987	0.085	293.42
121	10.951	N291	72.3	1.000	3 A	2	11.045	11.102	0.085	290.54
122	10.863	N321	15.2	0.975	5 A	0	10.850	10.876	0.085	290.77
123	10.786	N316	30.1	0.955	5В	0	10.760	10.813	0.085	291.17
124	10.757	N312	29.1	0.980	4 A	0	10.732	10.783	0.085	294.63
125	10.723	N317	30.6	0.931	5 C	0	10.696	10.749	0.085	293.18
126	10.680	N328	20.6	0.987	4 A	0	10.663	10.698	0.085	290.93

ż

÷

2 22			BH	I_RCA_30	pt	vda	ta.t	xt			
2.00	0.0000	N306	21.9	0.984	5	А	0	10.634	10.671	0.085	292.60
128	10.582	N313	19.6	0.972	6	в	0	10.566	10.599	0.085	290.00
129	10.521	N313	17.2	0.972	6	в	0	10.506	10.535	0.085	289.49
130	10.477	N314	19.9	0.983	5	A	0	10.460	10.494	0.085	290.49
131	10.457	N312	19.3	0.995	6	А	0	10.441	10.474	0.085	292.12
132	10.413	N315	20.8	0.985	6	А	0	10.395	10.431	0.085	291.68
133	10.356	N146	77.8	1.000	3	Α	2	10.185	10.197	0.085	295.81
134	10.344	N319	19.2	0.973	5	В	0	10.327	10.360	0.085	296.75
135	10.302	N313	15.4	0.971	6	В	0	10.288	10.315	0.085	292.57
136	10.248	N307	16.3	0.951	6	В	0	10.234	10.262	0.085	293.91
137	10.246	N218	59.0	1.000	3	Α	2	10.174	10.187	0.085	293.99
138 2.00	10.182	N326	21.3	0.975	5	Α	0	10.164	10.200	0.085	290.40
139 2.00	10.167	N112	4.1	0.995	4	A	2	10.167	10.168	0.085	291.86
140	10.107	N294	15.4	0.990	6	A	0	10.094	10.120	0.085	294.00
141	10.044	N208	69.0	1.000	3	A	2	9.932	9.947	0.085	293.80
142	10.016	N294	18.0	0.975	5	A	0	10.000	10.031	0.085	290.35
143	9.987	N047	78.5	1.000	3	A	2	9.794	9.849	0.085	288.18
144	9.957	N299	20.1	0.975	6	A	0	9.940	9.974	0.085	288.78
145	9.932	N011	55.2	0.990	4	A	2	9.870	9.928	0.085	289.00
146	9.916	N197	57.0	1.000	3	A	2	9.932	9.958	0.085	289.00
147	9.907	N185	71.6	1.000	3	A	2	9.965	10.021	0.085	289.00
148	9.877	N321	21.5	0.935	6	С	0	9.859	9.895	0.085	289.38
149	9.708	N302	25.1	0.993	5	A	0	9.686	9.730	0.085	288.24
150	9.635	N291	17.5	0.954	5	В	0	9.620	9.650	0.085	291.45
151 2.00	9.578	N121	84.2	1.000	3	A	2	9.867	9.889	0.085	292.27
152	9.573	N026	81.7	1.000	3	A	2	9.291	9.319	0.085	292.09
153	9.512	N109	79.8	1.000	3	A	2	9.315	9.346	0.085	293.03
154 2.00	9.462	N292	18.9	0.989	5	A	0 .	9.445	9.478	0.085	290.56
155 2.00	9.294	N287	14.9	0.972	4	В	0	9.281	9.307	0.085	293.85
156 2.00	9.200	N295	20.1	0.961	4	В	0	9.183	9.218	0.085	290.91
157 2.00	9.144	N312	20.7	0.982	5	A	0	9.126	9.161	0.085	288.00
158	9.111 0.0000	N315	19.4	0.981	5	A	0	9.095	9.128	0.085	288.00
159	9.096	N288	62.4	1.000	3	A	2	9.165	9.185	0.085	288.00
160	9.043	N326	24.2	0.991	4	A	0	9.023	9.064	0.085	291.85

ż

÷

		3.		BH_RCA_3c	pt	vda	ita.	txt			
2.00	0.0000) N320	19.1	0.984	5	A	0	8.971	9.004	0.085	289.17
162	8.876	N135	72.9	1.000	3	A	2	8.752	8.798	0.085	288.40
163	8.847	N318	15.5	0.968	5	В	0	8.834	8.860	0.085	288.97
164	8.826	N316	14.9	0.949	.4	В	0	8.813	8.839	0.085	289.40
165	8.745	N283	78.8	0.987	4	Α	2	8.671	8.722	0.085	290.00
166 2.00	8.713	N337	15.6	0.960	4	в	0	8.700	8.726	0.085	290.00
167 2.00	8.584 0.0000	N103	82.6	0.974	4	A	2	8.541	8.678	0.085	291.28
168 2.00	8.496 0.0000	N201	21.0	1.000	3	A	2	8.503	8.512	0.085	289.99
169 2.00	8.430 0.0000	N189	71.4	1.000	3	A	2	8.505	8.551	0.085	290.89
170	8.428	N169	64.7	1.000	3	A	2	8.342	8.428	0.085	291.19
1/1 2.00	8.347	N322	24.8	1.000	3	A	2	8.328	8.358	0.085	288.17
2.00	8.204	N291	24.9	0.994	4	A	0	8.182	8.225	0.085	291.53
2.00	8.026	NJUL	19.3	0.997	4	A	0	8.009	8.042	0.085	293.81
2.00	0.0000	NTT2	44.1	0.946	5	C	2	7.985	8.061	0.085	293.92
2.00	0.0000	N202	20.8	0.977	4	A	0	7.855	7.891	0.085	290.03
2.00	0.0000	N296	18 5	0.975	7	A	0	7.800	7.042	0.085	209.44
2.00	0.0000	N293	19.0	1,000	7	Δ	2	7,761	7 783	0.085	209.92
2.00	0.0000	N256	20.1	1.000	3	A	2	7.721	7.733	0.085	292.00
2.00 180	0.0000 7.705	N311	45.0	1.000	3	A	2	7.736	7.750	0.085	292.00
2.00 181	0.0000 7.612	N272	16.7	0.998	4	A	2	7.598	7.618	0.085	287.97
2.00 182	0.0000 7.603	N175	63.3	1.000	3	A	2	7.579	7.625	0.085	287.40
2.00	0.0000 7.479	N302	18.8	0.975	4	A	0	7.463	7.495	0.085	291.27
184	7.424	N317	17.9	1.000	3	A	2	7.410	7.432	0.085	289.30
185	7.341	N306	15.5	0.968	4	в	0	7.328	7.355	0.085	286.57
186	7.151	N110	79.5	1.000	3	A	2	6.959	7.015	0.085	290.21
187	7.097	N273	11.4	1.000	4	A	0	7.087	7.108	0.085	290.97
188	7.040	N174	50.7	1.000	3	A	2 .	7.058	7.090	0.085	290.76
189 2.00	6.719 0.0000	N309	32.0	0.959	7	В	2	6.691	6.748	0.085	288.40
190 2.00	6.637 0.0000	N274	75.3	1.000	3	A	2	6.733	6.824	0.085	288.19
191 2.00	6.609 0.0000	N326	27.8	0.943	4	С	0	6.585	6.633	0.085	288.73
192 2.58	6.267 0.0000	N076	83.8	1.000	3	A	2	5.977	5.982	0.085	288.61
193 2.00	6.173 0.0000	N302	21.5	0.935	5	С	0	6.155	6.192	0.085	291.09 i.
194	6.078	N124	69.5	1.000	3	A	2	5.975	5.982	0.085	289.18

ι.
2 00	0.0000			BH_RCA_3o	ptvd	ata.	txt			
195	5.989	N203	5.7	1.000	3 A	2	5.986	5.993	0.085	292.30
2.00 196	5.967	N285	42.6	1.000	3 A	2	5.925	5.935	0.085	293.18
2.00	0.0000	N355	7.4	1.000	3 A	2	5.956	5.964	0.085	293.39
2.00	0.0000 5.933	N165	36.8	1.000	3 A	2	5.935	5.963	0.085	293.73
2.00	0.0000	N299	8.1	1.000	3 A	2	5.933	5.935	0.085	293.64
2.00	0.0000	N129	33.2	1.000	3 A	2	5.928	5.937	0.085	293.36
2.00	5.844	N071	64.8	1.000	3 A	2	5.762	5.865	0.085	295.59
2.00	5.801	N139	63.0	1.000	3 A	2	5.854	5.879	0.085	285.25
2.00	5.784	N115	48.7	1.000	3 A	2	5.739	5.749	0.085	284.98
2.00	5.730	N306	16.1	0.982	5 A	2	5.716	5.740	0.085	287.67
2.00	5.716	N025	24.6	1.000	3 A	2	5.733	5.735	0.085	287.40
2.00	5.714	N315	45.3	1.000	3 A	2	5.745	5.759	0.085	287.36
207	5.630	N154	70.5	0.965	4 в	2	5.647	5.717	0.085	289.00
2.00	5.572	N101	83.0	1.000	3 A	2	5.722	5.833	0.085	288.53
2.00	0.0000									

.

1

.

ź

*

1...

.

.

⁽¹ of 11)

Figure OPTV4 (2 of 11)

11.542 to 8.624m

1.-

.

.

RGLDIPv6.2 OPTV results

K = 0: FEATURE K = 2: FEATURE

borehole RCA 4 zone from 7.101 to 16.197 m North ref is magnetic Dip format: Dip-azimuth and Dip

deviat	ion						Upper	Lower	Well	Well
Dev	Depth Azim Thickness	uth Dip	1-P0/100	n	Q	К	Depth	Depth	Diam	Azimuth
1	16.116 N31	0 17.4	0.983	6	Δ	0	16 101	16 131	0 085	202 60
2.00	0.0000 16.070 N30	6 15 5	0 080	5	^	0	16 057	10.151	0.005	202.40
2.00	0.0000	1 14 0	0.000	5		0	10.057	10.084	0.085	303.48
2.00	0.0000	1 14.8	0.979	5 /	A	0	16.036	16.062	0.085	303.06
4 2.00	15.976 N30 0.0000	6 14.1	0.984	5	A	0	15.964	15.989	0.085	298.61
5 2.00	15.958 N29	8 14.4	0.976	5 /	A	0	15.945	15.970	0.085	298.23
6	15.823 N29	6 18.4	0.997	5 /	Ą	0	15.807	15.838	0.085	301.94
7	15.783 N30	1 17.7	0.975	6 /	Ą	0	15.768	15.798	0.085	301.98
2.00	15.759 N300	17.7	0.997	5 A	4	0	15.744	15.774	0.085	300.02
2.00	15.689 N30	5 19.4	0.970	5 E	В	0	15.672	15.706	0.085	302.69
10	15.615 N304	4 15.5	0.996	5 4	4	0	15.601	15.628	0.085	306.38
11	15.572 N309	9 16.8	0.982	6 A	4	0	15.557	15.586	0.085	305.51
12	15.512 N311	L 16.2	0.984	5 A	4	0	15.498	15.526	0.085	310.45
13	15.483 N324	19.3	0.984	5 A	4	0	15.467	15.500	0.085	311.74
14	15.456 N200	12.6	1.000	3 A	4	2	15.463	15.465	0.085	309.01
15	15.403 N325	5 16.9	0.982	5 A	٩	0	15.389	15.418	0.085	312.29
16	15.388 N318	8 18.4	0.971	6 E	3	0	15.372	15.404	0.085	313.17
17	15.279 N321	. 16.7	0.995	5 A	١	0	15.264	15.293	0.085	319.65
18	15.123 N003	17.2	0.974	5 A		0 .	15.109	15.138	0.085	319.64
19	15.008 N146	74.8	1.000	3 A		2	15.133	15.146	0.085	319.25
20	15.006 N342	17.5	0.996	5 A		0	14.991	15.021	0.085	319.21
21	14.940 N308	27.0	1.000	3 A		2	14.917	14.924	0.085	318.23
22	14.894 N136	63.1	1.000	3 A		2	14.944	14.971	0.085	319.92
23	14.887 N290	49.8	1.000	3 A		2	14.834	14.840	0.085	319.66
24	14.844 N349	15.3	1.000	3 A		2	14.831	14.833	0.085	317.96

1. T. M. L.

.

			BH_	_RCA_40	ot	vda	ta.t	xt			
2.00	0.0000 14.800	N344	17.0	0.995	4	A	0	14.786	14.815	0.085	317.08
2.00	0.0000	N335	15 1	0 985	5	۵	0	14 778	14 754	0.085	313,19
2.00	0.0000	1245	41 E	1 000	2		2	14 726	14 775	0 0 0 5	212 20
2.00	0.0000	NZ45	41.5	1.000	2	A	2	14.730	14.775	0.065	515.59
28	14.669	N337	12.9	0.985	5	A	0	14.658	14.680	0.085	315.00
29	14.629	N337	11.0	0.988	5	Α	0	14.619	14.639	0.085	315.34
30	14.602	N144	76.2	1.000	3	А	2	14.452	14.476	0.085	315.87
31	14.571	N020	49.7	1.000	3	А	2	14.520	14.524	0.085	317.48
2.00	0.0000 14.563	N187	70.5	1.000	3	A	2	14.451	14.459	0.085	317.97
33	14.534	N326	14.9	0.994	5	A	0	14.521	14.547	0.085	319.00
34	14.493	N333	14.3	0.969	5	в	0	14.480	14.505	0.085	319.00
35	14.480	N139	2.0	1.000	3	A	2	14.480	14.480	0.085	319.00
36	14.439	N327	18.8	0.957	6	в	0	14.423	14.455	0.085	319.15
37	14.394	N322	17.8	0.964	5	В	0	14.379	14.410	0.085	319.81
38	14.376	N318	16.2	0.979	5	A	0	14.362	14.390	0.085	317.65
39	14.288	N327	13.9	0.945	4	с	0	14.276	14.300	0.085	316.51
40	14.256	N316	13.6	0.979	4	A	0	14.244	14.268	0.085	314.60
41	14.179	N311	14.7	0.996	5	A	0	14.166	14.191	0.085	317.22
2.00	0.0000 14.117	N313	13.5	0.976	5	A	0	14.105	14.128	0.085	314.93
43	0.0000	N317	14.4	0.980	5	A	0	14.056	14.081	0.085	315.92
2.00	14.035	N331	13.8	0.991	6	A	0	14.023	14.047	0.085	314.12
45	0.0000	N327	15.0	0.982	5	А	0	14.005	14.031	0.085	312.74
2.00	0.0000 13.943	N325	15.3	0.971	6	в	0	13.930	13.957	0.085	312.11
2.00	0.0000	N323	14.1	0.974	5	A	0	13.902	13.927	0.085	313.26
2.00	0.0000	N326	13.4	0.980	5	A	0	13.778	13.801	0.085	311.26
2.00	0.0000 13.731	N327	14.7	0.988	5	А	0	13,718	13.743	0.085	311.78
2.00	0.0000	N344	13.5	0.984	5	A	0	13,689	13.712	0.085	309.35
2.00	0.0000	N339	15.3	0.999	5	A	0	13.659	13.685	0.085	308.53
2.00	0.0000	N311	38.5	1,000	3	A	2 ·	13.614	13.614	0.085	308.08
2.00	0.0000	N340	16.7	0.983	5	A	0	13.624	13.653	0.085	307.54
2.00	0.0000 13.609	N338	16.6	0.978	5	A	0	13.595	13.623	0.085	305.76
2.00	0.0000 13.570	N337	20.1	0.968	5	в	0	13.553	13.587	0.085	308.65
2.00 56	0.0000 13.543	N322	18.4	0.984	5	A	0	13.528	13.559	0.085	311.84
2.00 57	0.0000 13.514	N321	14.5	0.975	5	A	0	13.501	13.526	0.085	310.06
2.00 58	0.0000 13.491	N315	14.4	0.982	6	А	0	13.479	13.504	0.085	309.37

Ż

ų,

			BH	_RCA_4o	pt	vda	ta.t	xt			
2.00	0.0000	N123	33.7	1.000	3	А	2	13.442	13.454	0.085	312.42
2.00 60	13.425	N303	16.4	0.987	5	А	0	13.411	13.439	0.085	312.15
61	13.339	N326	17.0	0.980	5	А	0	13.325	13.354	0.085	306.27
62	13.266	N351	38.1	1.000	3	A	2	13.231	13.232	0.085	308.60
63	13.217	N304	15.5	0.988	4	Α	0	13.203	13.230	0.085	307.83
64	13.134	N313	15.4	0.990	5	А	0	13.120	13.147	0.085	310.75
65	13.087	N316	15.5	0.985	5	Α	0	13.074	13.101	0.085	309.65
66	13.023	N317	15.2	0.968	5	в	0	13.010	13.036	0.085	308.00
67	12.939	N330	15.0	0.979	5	A	0	12.926	12.952	0.085	305.58
68	12.872	N316	17.9	0.983	5	Α	0	12.857	12.887	0.085	306.10
69	12.720	N317	13.8	0.984	5	Α	0	12.708	12.732	0.085	301.92
70	12.668	N311	15.2	0.987	6	А	0	12.655	12.681	0.085	301.12
71	12.496	N325	16.2	0.959	5	в	0	12.482	12.510	0.085	305.00
72	12.448	N330	18.5	0.988	5	А	0	12.433	12.464	0.085	305.00
73	12.405	N326	16.0	0.987	6	Α	0	12.391	12.419	0.085	305.00
74	12.352	N330	16.3	0.990	5	Α	0	12.338	12.366	0.085	301.50
75	12.201	N293	16.7	0.944	5	С	0	12.187	12.216	0.085	301.21
76	12.153	N298	9.1	0.998	4	A	0	12.145	12.161	0.085	302.72
77	12.046	N299	18.5	0.947	5	В	0	12.030	12.062	0.085	305.00
78	11.976	N329	16.0	0.986	5	Α	0	11.962	11.990	0.085	304.20
79	11.909	N323	15.2	0.969	5	В	0	11.896	11.922	0.085	305.21
80	11.884	N324	17.5	0.987	5	A	0	11.869	11.899	0.085	305.52
81 2.00	11.750	N320	17.2	0.970	5	В	0	11.735	11.764	0.085	305.93
82	11.651	N316	18.3	0.973	5	В	0	11.635	11.666	0.085	304.28
83	11.563	N316	18.9	0.958	6	В	0	11.547	11.579	0.085	309.32
84 2.00	11.499	N311	17.9	0.961	6	В	0	11.484	11.515	0.085	306.33
85	11.410	N314	19.5	0.959	6	В	0	11.394	11.427	0.085	306.00
86	11.365	N310	14.8	0.974	5	Α	0 -	11.352	11.378	0.085	308.48
87	11.249	N308	17.6	0.981	5	A	0	11.234	11.264	0.085	309.93
88 2.00	11.143 0.0000	N317	19.2	0.993	5	A	0	11.127	11.160	0.085	309.17
89 2.00	11.072 0.0000	N328	17.9	0.974	5	A	0	11.056	11.087	0.085	311.51
90 2.00	11.023 0.0000	N311	18.1	0.967	5	В	0	11.007	11.038	0.085	311.00
91 2.00	10.956 0.0000	N336	16.0	0.951	5	В	0	10.942	10.970	0.085	307.80
92	10.888	N312	16.8	0.968	5	В	0	10.874	10.903	0.085	308.48
					-						

1

÷

			BH	_RCA_4o	pt	vda	ta.t	xt			
2.00	0.0000 10.861	N317	14.7	0.972	5	в	0	10.848	10.874	0.085	310.10
2.00 94	10.772	N350	15.8	0.996	5	A	0	10.758	10.785	0.085	307.91
95	10.754	N092	85.2	1.000	3	А	2	10.380	10.461	0.085	309.99
96	10.747	N328	15.2	0.970	5	в	0	10.734	10.760	0.085	310.88
97	10.700	N328	18.0	0.977	6	Α	0	10.684	10.715	0.085	309.15
98 2 00	10.668	N328	15.7	0.970	5	В	0	10.655	10.682	0.085	310.12
99 2 00	10.591	N322	16.2	0.997	5	Α	0	10.577	10.605	0.085	309.10
100	10.562	N322	16.6	0.970	5	в	0	10.548	10.576	0.085	309.68
101	10.469	N234	58.2	1.000	3	Α	2	10.399	10.408	0.085	311.00
102	10.464	N330	17.1	0.969	5	В	0	10.449	10.479	0.085	311.00
103	10.457	N121	69.6	1.000	3	A	2	10.354	10.375	0.085	311.00
104	10.436	N270	3.0	1.000	3	A	2	10.434	10.436	0.085	311.00
105	10.420	N350	2.9	1.000	3	Α	2	10.417	10.419	0.085	311.00
106	10.419	N355	34.8	1.000	3	Α	2	10.388	10.393	0.085	311.00
107	10.408	N338	22.9	1.000	3	Α	2	10.409	10.427	0.085	311.00
108	10.404	N259	29.7	1.000	3	A	2	10.379	10.398	0.085	311.00
109	10.399	N039	25.0	1.000	3	А	2	10.380	10.383	0.085	311.00
110	10.381	N121	87.6	1.000	3	A	2	9.827	9.883	0.085	311.00
111	10.352	N352	13.6	1.000	3	A	2	10.353	10.363	0.085	311.00
112	10.345	N155	72.3	0.960	4	В	2	10.338	10.444	0.085	311.00
113	10.289	N320	20.5	0.979	6	A	0	10.272	10.307	0.085	311.00
114	10.285	N263	56.7	1.000	3	A	2	10.350	10.353	0.085	311.00
115	10.255	N316	20.2	0.949	5	В	0	10.238	10.272	0.085	311.00
116	10.252	N098	65.1	0.991	4	A	2	10.222	10.271	0.085	311.00
117	10.230	N341	68.0	1.000	3	A	2	10.213	10.244	0.085	311.33
118	10.227	N141	80.5	1.000	3	A	2	10.104	10.167	0.085	311.38
119	10.224	N349	32.9	1.000	3	A	2	10.195	10.206	0.085	311.44
120	10.222	N323	17.4	0.992	4	Α	0 ·	10.207	10.237	0.085	311.49
121	10.182	N327	78.6	1.000	3	Α	2	9.927	9.953	0.085	312.55
122	10.180	N194	65.5	1.000	3	A	2	10.091	10.163	0.085	312.65
123	10.173	N332	18.2	0.995	5	A	0	10.157	10.188	0.085	312.93
124	10.150	N151	5.0	1.000	3	A	2	10.151	10.152	0.085	313.85
125	10.140	N144	47.4	1.000	3	A	2	10.178	10.184	0.085	313.67
126	10.088	N316	19.8	0.934	5	с	0	10.071	10.105	0.085	311.33

÷

			BH	_RCA_4o	pt	vda	ta.t	xt			
2.00	0.0000	N118	22.5	1.000	3	A	2	10.068	10.075	0.085	311.48
128	10.075	N183	73.2	1.000	3	Α	2	10.165	10.204	0.085	311.84
129	10.067	N073	27.6	1.000	3	Α	2	10.082	10.088	0.085	312.16
130	10.020	N221	75.3	1.000	3	A	2	10.107	10.167	0.085	313.00
131	10.001	N324	70.7	1.000	3	Α	2	9.876	9.946	0.085	313.00
132	9.982	N326	18.8	0.959	4	В	0	9.966	9.998	0.085	312.45
133	9.964	N312	54.2	1.000	3	Α	2	9.901	9.913	0.085	311.73
134	9.939	N345	14.6	1.000	3	A	2	9.926	9.951	0.085	311.29
135	9.896	N024	74.7	1.000	3	Α	2	10.044	10.058	0.085	313.00
136	9.871	N199	26.9	1.000	3	Α	2	9.876	9.892	0.085	313.00
137	9.772	N331	15.5	0.958	5	В	0	9.759	9.785	0.085	312.48
138	9.765	N292	13.6	1.000	3	Α	2	9.754	9.768	0.085	312.62
139	9.764	N173	78.0	0.986	4	Α	2	9.794	9.863	0.085	312.65
140	9.748	N306	17.6	0.961	5	в	0	9.733	9.763	0.085	312.96
141	9.716	N019	44.2	1.000	3	Α	2	9.740	9.758	0.085	313.00
142	9.620	N001	14.8	1.000	3	A	2	9.611	9.619	0.085	310.46
143	9.613	N327	12.5	1.000	3	А	2	9.607	9.616	0.085	310.03
144	9.610	N196	83.3	1.000	3	Α	2	9.782	9.887	0.085	309.84
145	9.562	N335	17.4	0.982	5	А	0	9.547	9.577	0.085	310.37
146	9.528	N330	19.7	0.969	5	В	0	9.511	9.545	0.085	310.64
147	9.503	N202	82.0	1.000	3	A	2	9.761	9.783	0.085	310.15
148	9.495	N115	71.5	1.000	3	Α	2	9.598	9.609	0.085	309.99
149	9.491	N316	18.3	0.974	4	A	0	9.475	9.507	0.085	309.90
150	9.457	N320	24.1	0.975	5	A	0	9.436	9.478	0.085	309.22
151	9.422	N307	18.2	0.990	5	Α	0	9.407	9.438	0.085	309.94
152	9.304	N338	17.2	0.968	4	в	0	9.290	9.319	0.085	311.33
153	9.302	N171	79.2	1.000	3	A	2	9.481	9.496	0.085	311.24
154	9.247	N332	17.2	0.999	4	A	0 ·	9.232	9.262	0.085	311.98
155	9.212	N081	87.3	1.000	3	A	2	9.776	9.816	0.085	310.62
156	9.185	N326	16.0	0.967	5	В	0	9.171	9.199	0.085	310.00
157	9.136	N085	76.1	1.000	3	A	2	9.260	9.291	0.085	310.20
158	9.088	N073	88.7	0.997	4	A	2	9.997	10.055	0.085	311.33
159	9.075	N324	18.5	0.992	5	A	0	9.059	9.091	0.085	311.83
160	8.957	N160	65.8	1.000	3	A	2	8.964	9.044	0.085	313.57

1

.

	22.2			E	3H_RCA_40	pt	/da	ta.	txt			
	2.00 161	0.0000 8.953	N332	16.7	0.992	5	A	0	8.939	8.968	0.085	313.70
	2.00 162	0.0000 8.924	N324	21.0	0.971	5	в	0	8.906	8.942	0.085	312.66
	2.00 163	0.0000 8.877	N107	72.6	0.981	4	А	2	8.955	8,996	0.085	312.15
	2.00 164	0.0000 8.868	N049	88.3	0.997	4	A	2	10.048	10.102	0.085	312.69
	2.00	0.0000	N317	21.8	0.981	4	Α	0	8.830	8.868	0.085	313.81
	2.00	0.0000	N316	19.9	0 981	4	Δ	0	8 756	8 790	0 085	313 91
	2.00	0.0000	N322	15 7			^	0	8 736	8 763	0 085	314 86
	2.00	0.0000	NJ60	80.0	0.094	т Л	~	2	8 655	8 720	0.005	214 20
	2.00	0.0000	N242	10.9	0.964	4	A	2	0.000	0.759	0.005	214.30
	2.00	0.0000	N342	10.1	0.934	4	C	0	8.002	8.690	0.085	314.40
	2.00	8.670	N296	86.2	0.999	4	A	2	9.884	9.954	0.085	314.53
	171 2.00	8.620 0.0000	N191	35.3	1.000	3	A	2	8.591	8.605	0.085	315.00
	172 2.00	8.617	N137	37.1	1.000	3	A	2	8.587	8.610	0.085	315.00
	173	8.608	N313	17.0	1.000	3	A	2	8.594	8.613	0.085	315.00
	174	8.559	N197	63.3	1.000	3	A	2	8.478	8.502	0.085	314.25
	175	8.518	N340	14.6	0.985	6	А	0	8.505	8.530	0.085	314.00
	176	8.508	N157	73.9	0.995	4	A	2	8.465	8.592	0.085	314.00
	177	8.480	N051	70.8	1.000	3	A	2	8.456	8.509	0.085	313.36
	2.00	0.0000 8.479	N067	72.2	1.000	3	A	2	8.352	8.390	0.085	313.32
	2.00 179	0.0000 8.468	N310	18.7	1.000	3	A	2	8.452	8.479	0.085	312.88
	2.00 180	0.0000 8.465	N116	15.4	1.000	3	A	2	8.455	8.468	0.085	312.76
	2.00 181	0.0000 8.406	N130	61.7	1.000	3	A	2	8.333	8.359	0.085	310.39
	2.00 182	0.0000 8.395	N329	23.3	0.977	5	A	0	8.375	8.415	0.085	310.08
	2.00	0.0000	N264	42.6	1,000	3	A	2	8.347	8.348	0.085	310.49
	2.00	0.0000	N321	21 3	0.924	5	c	0	8 287	8 374	0 085	310 58
~	2.00	0.0000	N250	87.6	0 998	4	Δ	2	9 921	9 984	0.085	310 29
	2.00	0.0000	N200	10 0	1 000	т 2	^	2	9.JZI	0 100	0.005	200 21
	2.00	0.0000	N309	40.0	1.000	с 7	A	2	0.1/1	0.103	0.005	308.31
	2.00	0.0000	N207	70.0	1.000	5	A	2	8.246	8.304	0.085	308.43
	188	8.203	N298	16.1	0.962	5	В	0.	8.189	8.21/	0.085	308.13
	189 2.00	8.196 0.0000	N274	48.3	1.000	3	A	2	8.218	8.246	0.085	308.05
	190 2.00	8.171 0.0000	N132	56.9	1.000	3	A	2	8.222	8.232	0.085	310.45
	191 2.00	8.048	N299	22.9	1.000	3	A	2	8.032	8.054	0.085	311.95
	192	7.922	N307	13.6	0.957	4	В	0	7.910	7.934	0.085	311.89
	193	7.898	N302	16.0	0.966	4	в	0	7.885	7.912	0.085	314.71
	194	7.876	N172	74.3	0.976	4	A	2	7.848	7.907	0.085	315.80

1

2 00	0 0000			BH_RCA_4c	ptvda	ta.	txt			
195	7.850	N324	16.5	0.984	5 A	0	7.836	7.864	0.085	316.83
196 2.00	7.814	N319	19.1	0.995	5 A	0	7.798	7.831	0.085	313.84
197 2.00	7.772	N322	23.8	0.955	5 B	0	7.752	7.793	0.085	312.00
198 2.00	7.751 0.0000	N322	24.5	0.990	5 A	0	7.730	7.772	0.085	312.00
199 2.00	7.725 0.0000	N313	34.2	1.000	3 A	2	7.694	7.708	0.085	317.06
200	7.715 0.0000	N355	28.1	1.000	3 A	2	7.695	7.716	0.085	319.47
201 2.00	7.707	N198	76.7	1.000	3 A	2	7.839	7.872	0.085	321.40
202	7.679	N072	80.0	1.000	3 A	2	7.896	7.907	0.085	320.99
1.51	0.0000	N352	31.9	0.951	4 B	2	7.644	7.675	0.085	319.61
1.03	0.0000	N343	33.0	0.963	5 B	0	7.619	7.676	0.085	315.23
1.00	0.0000	NU07	07.4	1.000	3 A 2 A	2	8.200	8.224	0.085	312.04
1.00	0.0000	N231	20.1	1,000	3 A	2	7.575	7.300	0.085	310.09
1.00	0.0000	N132	72 3	1 000	3 4	2	7 103	7.210	0.085	312 00
1.00	0.0000	N307	78.1	1.000	3 4	2	7 218	7 749	0.085	312.00
1.00	0.0000	11007	,	1.000	5 A	2	7.210	7.245	0.005	512.00

.

.

.

.

.

Figure OPTV4 (11 of 11)

'n

1.-

.

Appendix E - Embankment – Pond SI Geophysical Survey

APEX Geoservices Ltd. Geophysical & Geological Consultants

REPORT

ON THE

GEOPHYSICAL SURVEY

FOR THE

TARBERT/BALLYLONGFORD EMBANKMENT-POND SI

FOR

IRISH GEOTECHNICAL SERVICES LTD.

Kilanerin Gorey Co. Wexford

 Tel.
 0402-21842

 Mobile:
 087-9365000

 Fax:
 0402-21843

 Email:
 info@apexgeoservices.ie

PRIVATE AND CONFIDENTIAL

THE FINDINGS OF THIS REPORT ARE THE RESULT OF A GEOPHYSICAL SURVEY USING NON-INVASIVE SURVEY TECHNIQUES CARRIED OUT AT THE GROUND SURFACE. INTERPRETATIONS CONTAINED IN THIS REPORT ARE DERIVED FROM A KNOWLEDGE OF THE GROUND CONDITIONS, THE GEOPHYSICAL RESPONSES OF GROUND MATERIALS AND THE EXPERIENCE OF THE AUTHOR. APEX GEOSERVICES LTD. HAS PREPARED THIS REPORT IN LINE WITH BEST CURRENT PRACTICE AND WITH ALL REASONABLE SKILL, CARE AND DILIGENCE IN CONSIDERATION OF THE LIMITS IMPOSED BY THE SURVEY TECHNIQUES USED AND THE RESOURCES DEVOTED TO IT BY AGREEMENT WITH THE CLIENT. THE INTERPRETATIVE BASIS OF THE CONCLUSIONS CONTAINED IN THIS REPORT SHOULD BE TAKEN INTO ACCOUNT IN ANY FUTURE USE OF THIS REPORT.

PROJECT NUMBER	AGL07118		
AUTHOR	Снескер	REPORT STATUS	DATE
YVONNE O'CONNELL P.GEO.,		FINAL	11 [™] JANUARY 2008
M.Sc (GEOPHYSICS)			

TABLE OF CONTENTS

Е

E1. E1.1	INTRODUCTION Survey Objectives	1 1
E1.2	Survey Methodology	1
E1.3	Site Background	1
E1.4	Report Outline	1
E2. E2.1	INTERPRETED RESULTS 2D Resistivity Profiling	2 2
E2.2	Seismic Refraction Profiling	2
E2.3	Integrated Interpretation	3
E3.	CONCLUSIONS & RECOMMENDATIONS	4
_		
E4.	REFERENCES	5

MAPS

Map E : 1	Geophysical Survey Locations
1:2500	

INTERPRETED SECTIONS

Section E1	Interpreted 2D Resistivity Profiles	1 & 2 and Seismics Spreads 1, 2 & 6	1:1250
Section E2	Interpreted 2D Resistivity Profiles	3 & 4 and Seismics Spreads 3, 4 & 5	1:1250

APPENDICES

Appendix El	Geophysical Methodology
Appendix EII	P-wave Seismic Refraction Data
Appendix EIII	S-wave Seismic Refraction Data & Gmax values
Appendix EIV	Calculated Moduli
Appendix EV	Excavatability

E1. INTRODUCTION

APEX Geoservices Ltd. was requested by Irish Geotechnical Services Ltd. (IGSL), on behalf of Arup Consulting Engineers, to carry out a geophysical survey as part of the site investigation at the site of the proposed embankment for the Shannon LNG: Tarbert/Ballylongford LNG Terminal.

E1.1 Survey Objectives

The objectives of the survey were:

- v to profile variations in the bedrock topography
- v to provide the following geotechnical properties of the overburden and bedrock
 - classification of the overburden and bedrock
 - determine the consistency and density of the individual units in the stratigraphic profile
 - Dynamic Shear Modulus (Gmax)
 - Dynamic Young's Modulus (Dynamic Emax)
 - Dynamic Bulk Modulus

E1.2 Survey Methodology

- v 2D Resistivity profiling to provide information on lateral and vertical variations in overburden type and thickness, bedrock type and profile.
- v P-wave and S-wave Seismic Refraction profiling to verify overburden type, thickness and stiffness and provide information on depth to bedrock, rock type and strength.

E1.3 Site Background

The site is located between Ballylongford and Tarbert on the south coast of the Shannon Estuary. The survey was carried out over a distance of 400m (approx. 200m either side of the river). The topography of the survey line ranges from 14mOD to the east and west of the river to 5mOD at the river.

The geological map for the area (Geology of the Shannon Estuary, Sheet 17, GSI) indicates that the site is underlain by Shannon Group mudstone, siltstone and sandstone.

As part of the site investigation a program of eight trial pits and four rotary cored boreholes was conducted by IGSL (their locations are indicated on Map E1). The core and pit logs were made available to assist with the interpretation of the geophysical data. The trial pits encountered topsoil over firm to stiff sandy gravelly clay to depths ranging from 1.3m to 4m. The rotary cores indicated 1.7m to 9m of gravelly clay overlying 0.3 to 0.8m angular gravel (probable siltstone) overlying fresh to locally slightly and moderately weathered siltstone.

E1.4 Report Outline

- v The survey results are interpreted in Part E2.
- v A summary is made in Part E3.
- v The locations of the geophysical readings are shown on Map E1.
- v The interpreted resistivity and seismic data are shown on Sections E1 & E2.
- v The interpreted P-wave seismic data are contained in Appendix EII.
- v The interpreted S-wave seismic data are contained in Appendix EIII.
- v Dynamic Moduli calculations are contained in Appendix EIV.
- v Excavatability ratings are shown in Appendix EV.

E2. INTERPRETED RESULTS

E2.1 2D Resistivity Profiling

Four 2D Resistivity profiles were recorded across the site (Map E1, Sections E1 & E2). The recorded resistivity values, in conjunction with the trial pit and borehole data, have been interpreted on the following basis:

Resistivity (Ohm-m)	Interpretation
50 - 250	Sandy gravelly Clay
250 - 525	Clayey Sand/Gravel
525-1000	Sand/Gravel
50 - 385	Weathered Siltstone
50 - 385	Siltstone

E2.2 Seismic Refraction Profiling

Six P-wave seismic spreads were recorded across the site (Map E1, Appendix EII). The seismic survey also included the measurement of the shear wave (S-wave) velocity depth profile using the Multichannel Analysis of Surface Waves (MASW) method.

The P-wave seismic data, in conjunction with the trial pit and borehole data, have been interpreted as indicating four velocity layers as follows:

Layer	P-wave Velocity (Vp) Range (m/s)	Average Velocity (m/s)	Interpretation			
1	250-1000	462	Soft to Firm or Loose to Medium Dense Overburden			
2	536-1333	872	Firm to Stiff Overburden			
3	1300-2264 1771		Stiff to Very Stiff Overburden			
			Moderately to Slightly Weathered Bedrock			
4	3300-4050	3617	Slightly Weathered to Fresh Bedrock			

Layer 1 P-wave velocities (Vp) would be typical of soft to firm or loose to medium dense overburden material. Layer 2 Vp would be typical of firm to stiff or medium dense to dense overburden material. Layer 3 Vp has been interpreted as indicating stiff to very stiff overburden material or moderately to slightly weathered rock. The recorded Layer 4 Vp would be typical of slightly weathered to fresh bedrock.

The MASW signal achieved a maximum penetration of up to 21.5 - 27.2 m bgl. The measured shear wave velocities (Vs) range from 229 to 1670 m/s and the derived G_{max} values range from 114 to 7526 MPa (Appendix EIII).

Layers 1 and 2 have a Vs which is generally between 230 and 550 m/s. Seismic spread S6 recorded a decrease in Vs from 1m to 2m b.g.l. In addition, seismic spreads S1 and S2 recorded a decrease in Vs from 19.7m and 20.9m b.g.l respectively.

The Vp data were combined with the Vs data to calculate Poissons ratio, dynamic Bulk modulus and dynamic Youngs Modulus for each of the layers outlined by the Vp data analysis using the formulae fron Elastic Theory as presented by Davies & Schulteiss, 1980 contained in Appendix El. The calculated modulii are contained in Appendix ElV.

Note: A soil density of 2180 kg/m³ (derived/calculated from lab data) and a rock density of 2700kg/m³ (derived/calculated from lab data) has been used as directed by the Engineer, Arup.

E2.3 Integrated Interpretation

The integrated interpretation of the 2D resistivity data, seismic data, trial pit and borehole data has been drawn on Sections E1 & E2. The combined geophysical data have been interpreted indicating four subsurface layers as follows:

Layer	Vp Velocity (m/s)	Average Vp Velocity (m/s)	Resistivity (Ohm-m)	Interpretation	Stiffness/ Rock Quality	Estimated Excavatability	
1	250-1000	462	50-250	Sandy gravelly Clay	Soft - Firm	Diggable	
			250-525	Clayey Sand/Gravel	Loose- Medium		
			525-2000	Sand/Gravel	Dense		
2	536-1333	872	50-250	Sandy gravelly Clay	Firm - Stiff	Diggable	
			250-525	Clayey Sand/Gravel	Medium		
			525-2000	Sand/Gravel	dense- dense		
3	1300-2264	1771	50 - 250	Sandy gravelly Clay	Stiff-Very Stiff	Diggable	
			50 - 385	Moderately to Slightly weathered Siltstone	Fair - Good	Marginally Rippable – Break/Blast	
4	3300-4050	3617	50 - 385	Slightly weathered to fresh Siltstone	Good	Break /Blast	

Layer 1

The geophysical data indicates an upper layer of soft to firm sandy gravelly clay or loose to medium dense clayey sand/gravel with three small pockets of sand/gravel on Section E1. The interpreted thickness of Layer 1 ranges from 0.5-1.3m with an average thickness of 0.9m and should be diggable.

Layer 2

The geophysical data indicates an underlying layer of firm to stiff sandy gravelly clay or medium dense to dense clayey sand/gravel with two small pockets of sand/gravel on Section E1. The interpreted thickness of Layer 2 ranges from 0-3.3m with an average thickness of 1.7m and should be diggable.

Layer 3

Layer 3 Vp velocities would typically indicate stiff to very stiff sandy gravelly clay or moderately to slightly weathered mudstone/siltstone. In conjunction with the trial pit data, diggable stiff to very stiff sandy gravelly clay has been interpreted for this layer however, this layer may contain moderately to slightly weathered siltstone at its base. If weathered rock is present, the velocities would indicate that this layer will be marginally rippable where seismic velocities fall below 1800 m/s and will require breaking/blasting where velocities are >1800 m/s.

Layer 4

Velocities from 3300-4050m/s have been interpreted as indicating slightly weathered to fresh siltstone. The velocities recorded for this layer indicate that any excavation will require breaking/blasting.

E3. CONCLUSIONS & RECOMMENDATIONS

- The geophysical data was found to correlate well with the trial pit and borehole depths.
- Four subsurface layers have been interpreted from the combined data.
- Layer 1 has been interpreted as comprising diggable soft to firm sandy gravelly clay or loose to medium dense clayey sandy gravel ranging in thickness from 0.5 to 1.3m.
- Layer 2 has been interpreted as comprising diggable firm to stiff sandy gravelly clay or medium dense to dense clayey sandy gravel ranging in thickness from 0 to 3.3m.
- Layer 3 has been interpreted as diggable stiff to very stiff sandy gravelly clay however, this layer may contain moderately to slightly weathered siltstone at its base. If present the weathered rock should be marginally rippable where Vp velocities fall below 1800 m/s and will require breaking/blasting where Vp velocities are >1800 m/s.
- Layer 4 has been interpreted as slightly weathered to fresh siltstone. The Vp velocities recorded for this layer indicate that any excavation will require breaking/blasting.
- Where bedrock excavation is proposed a detailed assessment of excavatability should be carried out combining the results of the geophysical survey, rotary core drilling, strength testing, and trial excavation pits using a high powered excavator.
- A table presented in Appendix E: V illustrates the excavability of the bedrock, which considers the seismic compressional wave results.

E4. REFERENCES

Bell F.G., 1993; 'Engineering Geology', Blackwell Scientific Press.

Campus Geophysical Instruments, 2000; 'RES2DINV ver. 3.4 Users Manual', Birmingham, England.

Davies & Schulteiss, 1980; 'Seismic signal processing in Engineering Site Investigation – a case history', Ground Engineering, May 1980.

Golden Software, 1994; 'SURFER 7 Surface Mapping System Users Manual', Golden Software, CO., USA.

Hagedoorn, J.G., 1959; 'The plus - minus method of interpreting seismic refraction sections', Geophysical Prospecting, 7, 158 - 182.

Heerden, van H. 1987. 'Relation between Static and Dynamic moduli of rocks', Int. Journal of Rock Mech. Min. Sci. and Geomech Abs Vol. 24, No. 6 pp 381-385, Pergamon.

FirstPix, version 4.14 (1993)

GREMIX, version 2.54 (1993)

Geology of the Shannon Estuary, Sheet 17, GSI

KGS, 2000, Surfseis Users Manual, Kansas Geological Survey

Palmer, D., 1980; 'The Generalized Reciprocal Method of seismic refraction interpretation', SEG.

Park, C.B., Miller, R.D., and Xia, J., 1998; Ground roll as a tool to image near-surface anomaly:SEG Expanded Extracts, 68th Annual Meeting, New Orleans, Louisiana, 874-877.

Park, C.B., Miller, R.D., and Xia, J., 1999; Multi-channel analysis of surface waves (MASW): Geophysics, May-June issue.

Redpath, B.B., 1973; 'Seismic refraction exploration for engineering site investigations', NTIS, U.S. Dept. of Commerce

Sheriff, R.E., and Geldart, L.P., 1982; Exploration seismology, volume 1: Cambridge University Press, 253 pp.

Soske, J.L., 1959; 'The blind zone problem in engineering geophysics', Geophysics, 24, pp 359-365. MAP

INTERPRETED SECTIONS

Interpreted 2D Resistivity & Seismic Profiles

APPENDIX EI GEOPHYSICAL METHODOLOGY

APPENDIX EI GEOPHYSICAL METHODOLOGY

M1.	Methods Used
1.1	2D-Resistivity Profiling
1.2	Seismic Refraction Profiling
M2.	Equipment Used
2.1	2D-Resistivity Profiling
2.2	Seismic Refraction Profiling
МЗ.	Field Procedure
3.1	2D-Resistivity Profiling
3.2	Seismic Refraction Profiling
M4.	Data Processing
4.1	2D-Resistivity Profiling
4.2	Seismic Refraction Profiling

M1. Methods Used

1.1 2D-Resistivity Profiling

The resistivity surveying technique used for the survey makes use of the Wenner resistivity array whereby four electrodes are placed in a line in the ground and a current is passed through the two outer electrodes. The potential difference is measured across the two inner electrodes. The measured potential is divided by the current value to obtain the resistance. The resistivity is determined from the resistance using the following formula:

Resistivity = Resistance* 2 * Pi * Spacing.

The 2D-resistivity profiling method records a large number of resistivity readings in order to map lateral and vertical changes in material types. The 2D-resistivity profiling method involves the use of 32 to 64 electrodes connected to a resistivity meter, using computer software to control the process of data collection and storage.

1.2 Seismic Refraction Profiling

This method measures the velocity of refracted seismic waves through the overburden and rock material and allows an assessment of the thickness and quality of the materials present to be made. Stiffer and stronger materials usually have higher seismic velocities while soft, loose or fractured materials have lower velocities. Readings are taken using geophones connected via multi-core cable to a seismograph.

In the MASW method Surface waves (Rayleigh waves) are utilized to determine the elastic properties of the shallow subsurface (<15m). Surface waves carry up to two/thirds of the seismic energy but are usually considered as noise in conventional body wave reflection and refraction seismic surveys.

The penetration depth of surface waves changes with wavelength, i.e. longer wavelengths penetrate deeper. When the elastic properties of near surface materials vary with depth, surface waves then become dispersive, i.e. propagation velocity changes with frequency. The propagation (or phase) velocity, is determined by the average elastic property of the medium within the penetration depth. Therefore the dispersive nature of surface waves may be used to investigate changes in elastic properties of the shallow subsurface.

The Multi-channel Analysis of Surface Waves (MASW) was used for this survey (Park et al., 1998, 1999). This method employs the multi-channel recording and processing techniques (Sheriff and Geldart, 1982) that have similarities to those used in a seismic reflection survey and which allow better waveform analysis and noise elimination. To produce a stiffness profile of the subsurface using Surface waves the following basic procedure is followed:

- (i) A point source (eg. a sledgehammer) is used to generate vertical ground motions,
- (ii) the ground motions are measured using low frequency geophones, which are disposed along a straight line directed toward the source,
- (iii) the ground motions are recorded using either a conventional seismograph, oscilloscope or spectrum analyzer,
- (iv) a dispersion curve is produced from a spectral analysis of the data showing the variation of Surface wave velocity with wavelength,
- (v) the dispersion curve in inverted using a modeling and least squares minimization process to produce a subsurface profile of the variation of Surface wave and shear wave velocity with depth.

M2. Equipment Used

2.1 2D-Resistivity Profiling

Four profiles were recorded from the 4th to the 5th April 2007 using a Tigre resistivity meter, imaging software, two 32 takeout multicore cables and 64 stainless steel electrodes. The recorded data was processed and viewed immediately after the survey.

2.2 Seismic Refraction Profiling

Six spreads were recorded from the 4th to the 5th April 2007 using a Ras-24 high resolution 24 channel digital seismograph with 24 no. 10HZ vertical geophones using 3m geophone spacings. The record length was 600 ms. The energy source of the seismic waves was a sledgehammer. The equipment was carried in 4WD vehicle with 2 person crew.

M3. Field Procedure

3.1 2D-Resistivity Profiling

Electrode spacings of 3m investigating to a maximum depth of 19m below ground level were used. Resistances were measured for expanding arrays. 2 cycles were recorded to 3% repeatability. Saline solution was added around electrodes in areas of high contact resistance. Local conditions and variations were recorded. QC inversion of each profile was carried out before removal of electrodes.

3.2 Seismic Refraction Profiling

The seismic spreads consisted of 12 or 24 collinear geophones at spacings of 3m. The depth of investigation was of the order of 23m below ground level. Records from up to seven different positions were taken on each spread (2 x off-end, 2 x end, 3 x middle) to ensure optimum coverage of all refractors. Ongoing estimation of refractor velocities was carried out to monitor refractor type and depth.

M4. Data Processing

4.1 2D-Resistivity Profiling

The field readings were stored in computer files and inverted using the RES2DINV package (Campus Geophysical Instruments, 1997) with up to 5 iterations of the measured data carried out for each profile to obtain a 2D-Depth model of the resistivities.

The inverted 2D-Resistivity models and corresponding interpreted geology are displayed on Sections E1 and E2. The chainage is indicated along the horizontal axis of the profile and the depth below ground level is indicated on the vertical axis. All profiles have been contoured using the same contour intervals and colour codes.

It is important to note that the data displayed on the 2D-Resistivity profiles is real physical data however interpretation of the geophysical results is required to transform the resistivities directly into geological layers.

4.2 Seismic Refraction Profiling

For the P-wave interpretation, first break picking in digital format was carried out using the FIRSTPIX software program to construct traveltime plots for each spread. Velocity phases were selected from these plots using the GREMIX software program and were used to calculate the thickness of individual velocity units. Topographic data were input. Material types were assigned and estimation made of material properties, cross-referenced to the 2D Resistivity and borehole data. The processed seismic data are displayed in Appendix EII and on Sections E1 and E2.

Approximate errors for velocities are estimated to be +/- 10%. Errors for the calculated layer thicknesses are of the order of +/-20%. Possible errors due to the "hidden layer" and "velocity inversion" effects may also occur (Soske, 1959).

For the S-wave interpretation, processing was carried out using the SURFSEIS processing package developed by Kansas Geological Survey (KGS, 2000). SURFSEIS is designed to generate a shear wave velocity profile. SURFSEIS data processing involves three steps:

(i) Preparation of the acquired multichannel record. This involves converting the data file into the processing format.

(ii) Production of a dispersion curve from a spectral analysis of the data showing the variation of Raleigh wave phase velocity with wavelength. Confidence in the dispersion curve can be estimated through a measure of signal to noise ratio (S/N) which is obtained from a coherency analysis. Noise includes both body waves and higher mode surface waves. To obtain an accurate dispersion curve the spectral content and phase velocity characteristics are examined through an overtone analysis of the data.

(iii) Inversion of the dispersion curve is then carried out to produce a subsurface profile of the variation of shear wave velocity with depth.

The shear wave velocities were then converted into shear modulus values using the formula:

|--|

Where	G	=	Shear Modulus (GPa)
	Vs	=	Shear Wave Velocity (m/s)
	ρ	=	Density (kg/m ³)

Processing parameters were optimized by test processing using varying options in the processing package and also by reference to optimal parameters referred to in the literature.

The first arrivals on each MASW record were also picked using the FIRSTPIX and GREMIX, 1993 packages in order to produce a conventional layered P-wave depth section and P-wave velocities. These velocities were combined with the shear wave velocity data to calculate Poissons ratio, dynamic Bulk modulus and Youngs Modulus for each of the layers outlined by the P-wave data analysis using the Theory of Elasticity formulae presented by Davies & Schulteiss, 1980 as follows:

- (2) $nu=(Vp/Vs)^2-2/2((Vp/Vs)^2-2)$
- (3) $E = 2V_s^2 \rho (1 + nu)/1000$

where	Е	=	Youngs Modulus (GPa)
	Vs	=	Shear Wave Velocity (m/s)
	ρ	=	Density (kg/m ³)

	nu	=	Poisson's ratio
and			
(4)			B = E/3(1-2 nu)

В	=	Bulk Modulus (GPa)
E	=	Youngs Modulus (GPa)
nu	=	Poisson's ratio
	B E nu	B = E = nu =

For the purpose of the calculation in this report a soil density of 2180 kg/m³ and a rock density of 2700kg/m³ (derived from lab data) have been used as directed by Arup.

APPENDIX EII P-WAVE SEISMIC REFRACTION DATA

LINE	Station	V1	V2	V3	V4	T1	T2	T3	T1+T2	T1+T2+T3	SURFACE	BASE1	BASE2	BASE3
		m/s	m/s	m/s	m/s	m	m	m	m	m	mOD	mOD	mOD	mOD
1	0	780	1300	2090	3954	0.5	0.7	2.3	1.2	3.4	4.6	4.1	3.4	1.2
1	3	780	1308	2264	3954	0.5	0.7	0.8	1.2	1.9	4.9	4.4	3.7	3.0
1	9	781	1325	2264	3954	0.5	0.8	1.0	1.2	2.2	5.5	5.0	4.3	3.3
1	12	782	1333	2264	3954	0.5	0.8	0.9	1.3	2.2	5.8	5.3	4.5	3.6
1	15	782	1333	2222	3954	0.5	0.8	3.4	1.3	4.7	6.1	5.6	4.8	1.4
1	18	685	1222	2121	4007	0.8	1.1	3.1	1.9	5.0	6.4	5.6	4.5	1.4
1	21	288	1000	2019	3840	1.1	1.2	2.9	2.3	5.2	0.7	5.6	4.4	1.5
1	27	394	889	1816	3840	1.1	1.5	3.3	2.6	5.9	7.9	6.8	5.3	2.0
1	30	297	777	1714	4008	1.0	1.5	2.9	2.5	5.4	8.5	7.5	6.0	3.2
1	33	297	777	1714	4008	1.0	1.5	4.4	2.5	6.9	9.1	8.1	6.6	2.2
1	36	307	819	1771	4008	1.0	1.8	1.6	2.8	4.4	9.5	8.5	6.7	5.1
1	39	317	902	1829	4008	1.0	2.1	0.7	3.1	3.8	9.8	8.8	6.8	6.0
1	45	338	944	1943	3964	1.0	2.7	1.3	3.7	5.0	10.2	9.6	6.9	5.6
1	48	348	985	2000	3964	1.0	3.0	1.3	4.0	5.3	10.9	9.9	6.9	5.6
1	51	348	985	2000	3964	1.0	3.0	1.5	4.0	5.5	11.3	10.3	7.3	5.8
1	54	387	960	1943	3964	1.0	2.8	2.6	3.9	6.4	11.4	10.4	7.5	5.0
1	57	427	934	1880	4046	1.0	2.7	3.3	3.7	6.9 7.4	11.0	10.6	7.9	4.7
1	63	506	883	1771	4047	0.8	2.4	4.5	3.2	7.7	11.9	11.1	8.7	4.2
1	66	545	857	1714	4049	0.7	2.3	5.1	3.0	8.1	12.1	11.4	9.1	4.1
1	69	545	857	1481	4050	0.7	2.5	4.7	3.1	7.9	12.2	11.5	9.1	4.4
2	0	444	1000	1486	3509	0.9	1.6	5.4	2.6	8.0	12.7	11.8	10.1	4.7
2	3	439	958	1484	3509	0.9	1.7	5.0	2.0	7.5	12.8	11.9	10.2	5.3
2	9	433	873	1479	3509	0.9	1.7	5.4	2.6	8.0	12.8	11.9	10.2	4.8
2	12	422	831	1476	3509	0.9	1.7	5.0	2.5	7.5	12.9	12.0	10.4	5.4
2	15	422	831	1476	3509	0.9	1.7	5.7	2.5	8.3	12.9	12.0	10.4	4.6
2	18	407	811	1437	3509	0.9	1.6	5.5	2.5	8.0	12.9	12.0	10.4	4.9
2	21	393	792	1398	3443	0.9	1.6	7.1	2.5	9.6	13.0	12.1	10.5	3.4
2	27	363	753	1319	3486	0.9	1.6	3.9	2.5	6.4	13.0	12.1	10.5	6.6
2	30	348	733	1280	3486	0.9	1.6	3.4	2.4	5.9	13.1	12.2	10.7	7.2
2	33	348	733	1280	3405	0.9	1.6	4.0	2.4	6.4	13.1	12.2	10.7	6.7
2	36	366	733	1381	3405	0.9	1.8	3.6	2.7	6.3	13.1	12.2	10.4	6.9
2	39	383	733	1481	3405	1.0	1.9	4.1	2.9	7.0	13.2	12.2	10.3	6.2
2	45	401	733	1683	3597	1.0	2.1	4.5	3.4	7.1	13.2	12.2	9.9	6.2
2	48	435	733	1783	3563	1.2	2.5	4.2	3.7	7.9	13.3	12.2	9.6	5.4
2	51	435	733	1783	3563	1.2	2.5	4.9	3.7	8.6	13.3	12.2	9.6	4.8
2	54	482	747	1747	3584	1.2	2.6	5.1	3.7	8.9	13.4	12.2	9.7	4.5
2	5/	528	760	1/10	3584	1.2	2.6	5.2	3.8	9.0	13.4	12.2	9.6	4.4
2	63	620	773	1637	3584	1.0	2.8	6.1	3.9	9.9	13.4	12.5	9.6	3.6
2	66	667	800	1600	3584	0.9	3.0	4.4	3.9	8.3	13.5	12.6	9.6	5.2
2	69	667	800	1600	3584	0.9	3.0	4.4	3.9	8.3	13.5	12.6	9.6	5.2
3	0	1000	1333	2000	3450	0.6	1.1	1.7	1.7	3.4	4.4	3.8	2.7	1.1
3	3	856 711	1333	2000	3455	1.1	0.7	2.8	1.8	4.b	4.5	3.5	2.8	-0.1
3	9	567	1333	2000	3464	1.3	0.4	5.3	1.4	6.7	4.8	3.5	3.4	-1.9
3	12	422	1333	2000	3472	1.2	0.5	2.4	1.7	4.1	4.9	3.7	3.2	0.8
3	15	422	1333	2000	3472	1.2	0.5	2.6	1.7	4.3	5.0	3.8	3.3	0.7
3	18	471	1267	1958	3472	1.1	0.1	3.6	1.3	4.8	5.1	4.0	3.8	0.3
3	21	520	1133	1875	3472	1.1	0.4	3.1	1.5	4.b 4 9	5.2	4.1	3.7	0.6
3	27	618	1067	1834	3506	0.9	0.8	3.9	1.6	5.5	5.5	4.7	3.9	0.0
3	30	667	1000	1792	3506	0.7	0.9	2.8	1.6	4.4	5.6	4.9	4.0	1.2
3	33	667	1000	1792	3506	0.7	0.9	2.8	1.6	4.4	5.7	5.0	4.1	1.3
3	36	589	1000	1834	3506	1.0	0.7	1.7	1.7	3.5	5.9	4.9	4.2	2.4
3	42	432	1000	1917	3506	1.3	0.5	1.0	1.8	2.0	6.1	4.9	4.3	3.5
3	45	354	1000	1958	3526	1.3	0.4	0.9	1.7	2.6	6.4	5.1	4.7	3.8
3	48	276	1000	2000	3605	1.2	0.3	1.2	1.5	2.7	6.6	5.4	5.1	4.0
3	51	276	1000	2000	3605	1.2	0.3	3.4	1.5	4.9	6.8	5.6	5.3	1.9
3	54	335	945	2000	3605	1.2	1.1	2.6	2.3	4.9	/.0 7.0	5.8	4.7	2.1
3	60	453	836	2000	3591	1.2	2.3	2.4	2.9	4.7	7.4	6.0	4.3	2.7
3	63	512	782	2000	3624	0.8	2.8	2.0	3.6	5.6	7.6	6.8	4.0	2.1
3	66	571	727	2000	3624	0.5	3.2	2.1	3.7	5.8	7.7	7.2	4.0	1.9
3	69	571	727	2000	3624	0.5	3.3	1.9	3.8	5.7	7.9	7.4	4.1	2.2
4	0	250	620	1600	3450	0.6	1.9	3.2	2.5	5.7	0.8 مع	7.5	5.5	2.3
4	6	292	620	1569	3460	0.0	1.9	4.4	2.5	10.6	8.6	7.9	6.1	-2,0
4	9	313	619	1554	3553	0.7	1.8	3.0	2.6	5.6	8.9	8.2	6.3	3.4
4	12	333	619	1538	3553	0.8	1.8	3.4	2.6	6.0	9.3	8.5	6.7	3.3
4	15	333	619	1538	3553	0.8	1.8	3.1	2.6	5.7	9.6	8.8	7.0	3.9
4	18	343	625	1341	3553	0.8	2.2	2.6	3.0	5.6	9.9	9.1	6.9	4.3
4	24	362	637	1143	3672	0.8	2.0	0.8	3.7	4.5	10.5	9.8	6.9	6.2
4	27	372	643	1143	3672	0.8	2.4	2.3	3.2	5.5	10.9	10.1	7.7	5.5
4	30	382	649	1553	3527	0.8	2.0	5.2	2.8	7.9	11.3	10.5	8.6	3.4

LINE	Station	V1	V2	V3	V4	T1	T2	Т3	T1+T2	T1+T2+T3	SURFACE	BASE1	BASE2	BASE3
		m/s	m/s	m/s	m/s	m	m	m	m	m	mOD	mOD	mOD	mOD
4	33	382	649	1553	3527	0.8	2.0	5.8	2.8	8.6	11.6	10.8	8.9	3.1
4	36	382	688	1556	3527	0.8	2.1	4.6	2.9	7.5	11.8	11.0	8.9	4.3
4	39	382	727	1559	3670	0.8	2.1	5.5	3.0	8.5	12.0	11.2	9.0	3.5
4	42	382	766	1563	3670	0.9	2.2	6.8	3.1	9.9	12.1	11.2	9.0	2.2
4	45	382	805	1566	3670	0.9	2.2	5.8	3.2	8.9	12.3	11.4	9.2	3.4
4	48	382	844	1569	3670	1.0	2.3	5.1	3.2	8.3	12.5	11.5	9.3	4.2
4	51	382	844	1569	3608	1.0	2.3	5.7	3.2	8.9	12.7	11.7	9.5	3.8
4	54	378	836	1603	3625	1.0	2.3	5.8	3.3	9.1	12.9	11.9	9.6	3.8
4	57	375	827	1637	3625	1.0	2.4	6.2	3.3	9.5	13.1	12.1	9.8	3.6
4	60	371	818	1671	3625	1.0	2.4	6.6	3.4	10.0	13.3	12.3	9.9	3.3
4	63	367	809	1705	3625	1.0	2.5	6.0	3.4	9.5	13.5	12.5	10.1	4.0
4	66	364	800	1739	3625	1.0	2.5	5.5	3.5	9.0	13.7	12.7	10.2	4.8
4	69	364	800	1739	3625	1.0	2.5	5.5	3.5	9.0	13.9	12.9	10.4	5.0
5	0	400	889	1571	3418	1.0	2.1	5.0	3.1	8.1	14.0	13.1	10.9	5.9
5	3	377	867	1594	3418	1.0	2.1	4.0	3.1	7.1	14.1	13.1	11.1	7.1
5	6	355	844	1618	3418	1.0	2.0	4.6	3.0	7.7	14.2	13.2	11.2	6.6
5	9	332	822	1642	3418	1.0	2.0	4.2	3.0	7.3	14.4	13.3	11.3	7.1
5	12	310	800	1665	3418	1.0	2.0	4.3	3.0	7.3	14.5	13.5	11.5	7.1
5	15	310	800	1665	3414	1.0	2.0	3.8	3.0	6.8	14.6	13.6	11.6	7.8
5	18	334	/4/	1696	3525	1.0	2.1	2.4	3.1	5.5	14.7	13.7	11.6	9.3
5	21	358	641	1/2/	3525	0.9	2.2	3.6	3.1	b./ 07	14.8	13.9	11.7	8.1
5	24	303	590	1737	3020	0.9	2.2	5.6	3.1	0.7	15.0	14.1	10.1	0.2
5	27	407	509	1/00	3020	0.0	2.2	6.0	3.0	9.0	15.1	14.3	12.1	0.1
5	30	432	536	1010	2552	0.7	2.2	5.2	2.9	0.1	15.2	14.5	12.5	7.1
5	36	432	500	18/5	3710	0.7	2.2	5.5	2.3	8.6	15.0	14.5	12.5	6.6
5	39	526	662	1872	3710	0.7	2.7	5.4	3.3	8.7	15.2	14.0	11.8	6.4
5	42	573	725	1899	3545	0.7	2.9	77	3.6	11.2	15.0	14.3	11.0	3.8
5	45	620	788	1926	3545	0.6	3.1	7.6	3.8	11.3	14.9	14.2	11.1	3.5
5	48	667	851	1952	3545	0.6	3.3	7.0	3.9	11.0	14.7	14.1	10.8	3.8
5	51	667	851	1952	3545	0.6	3.3	6.6	3.9	10.5	14.6	14.0	10.7	4.1
5	54	618	851	1880	3545	0.7	2.9	6.3	3.6	10.0	14.5	13.8	10.9	4.6
5	57	568	851	1808	3545	0.8	2.5	7.3	3.3	10.6	14.4	13.6	11.1	3.8
5	60	519	851	1736	3707	0.8	2.1	5.3	2.9	8.3	14.3	13.5	11.4	6.1
5	63	470	850	1663	3707	0.9	1.7	6.7	2.6	9.3	14.2	13.3	11.6	4.9
5	66	421	850	1591	3707	0.9	1.3	5.2	2.1	7.3	14.1	13.2	11.9	6.8
5	69	421	850	1591	3707	1.0	0.8	5.7	1.8	7.5	14.0	13.0	12.2	6.5
6	0	800		2000	3300	0.7	0.0	3.0	0.7	3.7	5.4	4.8	4.8	1.7
6	3	713		2013	3422	0.8	0.0	3.5	0.8	4.3	5.6	4.8	4.8	1.3
6	6	625		2026	3543	1.0	0.0	3.9	1.0	4.9	5.8	4.9	4.9	1.0
6	9	538		2039	3543	1.0	0.0	3.1	1.0	4.1	6.0	5.0	5.0	1.9
6	12	450		2052	3543	1.0	0.0	3.2	1.0	4.2	6.2	5.2	5.2	2.0
6	15	450		2065	3543	1.0	0.0	4.2	1.0	5.2	6.4	5.4	5.4	1.2
6	18	417		2079	3543	1.1	0.0	4.0	1.1	5.1	6.6	5.5	5.5	1.5
6	21	384		2092	3543	1.2	0.0	2.3	1.2	3.5	6.7	5.5	5.5	3.2
6	24	351		2105	3543	1.3	0.0	2.0	1.3	3.3	6.9	5.6	5.6	3.6
6	27	319		2118	3346	1.3	0.0	3.6	1.3	5.0	7.1	5.8	5.8	2.2
6	30	286		2131	3346	1.3	0.0	4.4	1.3	5.8	7.3	6.0	6.0	1.6
6	33	286	500	2131	3346	1.3	0.0	2.4	1.3	3.7	7.5	6.2	6.2	3.8
		250	536	1143	3300	0.5	0.0	0.1	0.7	1.9	4.4	3.4	2.7	-2.0
		1000	1333	1771	4050	1.3	3.3	8.0	4.0	11.3	10.4	14.6	12.5	9.3
	AVERAGE	462	8/2	17/1	301/	0.9	1./	3.9	2.6	0.5	10.4	9.5	/.8	3.9
APPENDIX EIII S-WAVE SEISMIC REFRACTION DATA DETERMINED BY THE MASW METHOD

Shear Wave Velocities and calculated Gmax Values

S1			S2			S3		
Depth	Vs	Gmax*	Depth	Vs	Gmax*	Depth	Vs	Gmax*
m	m/s	MPa	m	m/s	MPa	m	m/s	MPa
0.99	297	192	1.05	253	139	0.91	247	133
2.23	297	192	2.37	253	139	2.05	247	133
2.23	500	545	2.37	555	671	2.05	405	357
3.78	500	545	4.02	555	671	3.48	405	357
3.78	659	947	4.02	626	853	3.48	624	848
5.71	659	1173	6.08	626	853	5.27	624	1050
5.71	786	1666	6.08	858	1607	5.27	590	940
8.13	786	1666	8.66	858	1990	7.5	590	940
8.13	1058	3021	8.66	1013	2768	7.5	730	1437
11.15	1058	3021	11.88	1013	2768	10.13	730	1437
11.15	1233	4102	11.88	1172	3707	10.13	965	2515
14.93	1233	4102	15.91	1172	3707	13.56	965	2515
14.93	1362	5006	15.91	1259	4279	13.56	1161	3639
19.66	1362	5006	20.94	1259	4279	17.85	1161	3639
19.66	1178	3746	20.94	1148	3557	17.85	1366	5039
25.56	1178	3746	27.23	1148	3557	23.21	1366	5039

64			05			<u> </u>		
54			20			20		
Depth	Vs	Gmax*	Depth	Vs	Gmax*	Depth	Vs	Gmax*
m	m/s	MPa	m	m/s	MPa	m	m/s	MPa
0.77	263	151	0.98	361	284	0	327	233
1.73	263	151	2.21	361	284	1.01	327	233
1.73	407	361	2.21	483	509	1.01	229	114
2.93	407	361	3.74	483	509	2.27	229	114
2.93	679	1006	3.74	801	1400	2.27	505	556
4.82	679	1006	5.66	801	1400	3.84	505	556
4.82	823	1477	5.66	849	1570	3.84	572	713
6.86	823	1477	8.06	849	1570	5.81	572	884
6.86	967	2039	8.06	993	2147	5.81	633	1083
9.41	967	2525	11.05	993	2660	8.27	633	1083
9.41	1058	3021	11.05	1243	4171	8.27	944	2408
12.6	1058	3021	14.8	1243	4171	11.34	944	2408
12.6	1138	3497	14.8	1532	6341	11.34	1078	3136
16.59	1138	3497	19.48	1532	6341	15.18	1078	3136
16.59	1311	4640	19.48	1670	7526	15.18	1244	4178
21.57	1311	4640	25.33	1670	7526	19.98	1244	4178
						19.98	1415	5404
						25.99	1415	5404

*Assumes soil density of 2180kg/m3

*Assumes rock density of 2700kg/m3 Gmax: Measures small strain stiffness of the ground

APPENDIX EIV CALCULATED MODULI

	Calculatio	on of static	and dynami	ic moduli - S1			
Depth (m bgl)	Vp m/sec	Vs m/sec	density kg/m^3	Poissons ratio	Shear* Mod. GPa Dynamic	Youngs * Mod. GPa Dynamic	Bulk* Mod. GPa Dynamic
0.99 2.23 2.23 3.78 3.78 5.71 5.71 8.13 8.13 11.15 14.93 14.93 19.66 19.66 25.56	512 1024 1024 1947 1947 3974 3974 3974 3974 3974 3974 3974 3	297 297 500 500 659 786 786 1058 1058 1058 1233 1233 1362 1362 1362 1178 1178	2180 2180 2180 2180 2700 2700 2700 2700 2700 2700 2700 27	0.247 0.454 0.344 0.465 0.435 0.480 0.480 0.480 0.462 0.462 0.462 0.447 0.447 0.433 0.433 0.452 0.452	Gmax 0.19 0.54 0.54 0.95 1.17 1.67 1.67 3.02 3.02 4.10 4.10 5.01 3.75 3.75 3.75	Emax 0.479 0.559 1.464 1.596 2.718 3.485 4.930 4.930 8.832 8.832 11.870 11.870 14.353 14.353 10.878 10.878	0.315 2.030 1.560 7.538 7.002 41.077 40.419 40.419 38.612 38.612 37.170 35.965 35.965 35.965 37.645 37.645
* from Davie	es & Schulte	eiss,1980.					

	Calculatio	on of static	and dynam	ic moduli - S2			
Depth (m bal)	Vp m/sec	Vs m/sec	density ka/m^3	Poissons ratio	Shear* Mod. GPa	Youngs * Mod. GPa	Bulk* Mod. GPa
(-3)			3		Dynamic Gmax	Dynamic Emax	Dynamic
1.05	450	253	2180	0.270	0.14	0.353	0.256
2.37	795	253	2180	0.444	0.14	0.402	1.192
2.37	795	555	2180	0.025	0.67	1.376	0.483
4.02	1526	555	2180	0.424	0.67	1.912	4.181
4.02	1526	626	2180	0.399	0.85	2.387	3.939
6.08	1526	626	2180	0.399	0.85	2.387	3.939
6.08	1526	858	2180	0.269	1.61	4.076	2.934
8.66	3521	858	2700	0.468	1.99	5.844	30.820
8.66	3521	1013	2700	0.455	2.77	8.055	29.782
11.88	3521	1013	2700	0.455	2.77	8.055	29.782
11.88	3521	1172	2700	0.438	3.71	10.659	28.531
15.91	3521	1172	2700	0.438	3.71	10.659	28.531
15.91	3521	1259	2700	0.427	4.28	12.210	27.768
20.94	3521	1259	2700	0.427	4.28	12.210	27.768
20.94	3521	1148	2700	0.441	3.56	10.248	28.731
27.23	3521	1148	2700	0.441	3.56	10.248	28.731
* from Davie	es & Schulte	eiss,1980.					

	Calculatio	on of static	and dynami	c moduli - S3			
Depth	Vp	Vs	density	Poissons ratio	Shear* Mod.	Youngs * Mod.	Bulk* Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa Dynamic Gmax	GPa Dynamic Emax	GPa Dynamic
0.91	532	247	2180	0.362	0.13	0.363	0.439
2.05	1066	247	2180	0.472	0.13	0.392	2.300
2.05	1066	405	2180	0.416	0.36	1.012	2.001
3.48	1948	405	2180	0.477	0.36	1.056	7.796
3.48	1948	624	2180	0.443	0.85	2.447	7.142
5.27	3529	624	2700	0.484	1.05	3.116	32.225
5.27	3529	590	2700	0.486	0.94	2.794	32.371
7.50	3529	590	2700	0.486	0.94	2.794	32.371
7.50	3529	730	2700	0.478	1.44	4.247	31.710
10.13	3529	730	2700	0.478	1.44	4.247	31.710
10.13	3529	965	2700	0.460	2.52	7.342	30.272
13.56	3529	965	2700	0.460	2.52	7.342	30.272
13.56	3529	1161	2700	0.439	3.64	10.475	28.773
17.85	3529	1161	2700	0.439	3.64	10.475	28.773
17.85	3529	1366	2700	0.412	5.04	14.229	26.907
23.21	3529	1366	2700	0.412	5.04	14.229	26.907
* from Davie	es & Schulte	eiss, 980.			<u> </u>	<u> </u>	

	Calculatio	on of static	and dynam	ic moduli - S4			
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
1.73	713	263	2180	0.421	0.15	0.429	0.907
1.73	713	407	2180	0.259	0.36	0.908	0.627
2.93	713	407	2180	0.259	0.36	0.908	0.627
2.93	1531	679	2180	0.377	1.01	2.771	3.769
4.82	1531	679	2180	0.377	1.01	2.771	3.769
4.82	1531	823	2180	0.297	1.48	3.830	3.141
6.86	1531	823	2180	0.297	1.48	3.830	3.141
6.86	1531	967	2180	0.168	2.04	4.763	2.392
9.41	3587	967	2700	0.461	2.52	7.377	31.373
9.41	3587	1058	2700	0.452	3.02	8.776	30.711
12.60	3587	1058	2700	0.452	3.02	8.776	30./11
12.60	3587	1138	2700	0.444	3.50	10.099	30.077
16.59	3587	1138	2700	0.444	3.50	10.099	30.077
16.59	3587	1311	2700	0.423	4.64	13.205	28.553
21.57	3587	1311	2700	0.423	4.64	13.205	28.553
* from Douis							
nom Davie	S & SCHUIL	355,1900.					

	Calculatio	on of static	and dynami	ic moduli - S5			
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
2.21	764	361	2180	0.357	0.28	0.769	0.894
2.21	764	483	2180	0.167	0.51	1.187	0.594
3.74	1753	483	2180	0.459	0.51	1.484	6.021
3.74	1753	801	2180	0.368	1.40	3.831	4.832
5.66	1753	801	2180	0.368	1.40	3.831	4.832
5.66	1753	849	2180	0.347	1.57	4.230	4.606
8.06	1753	849	2180	0.347	1.57	4.230	4.606
8.06	1753	993	2180	0.264	2.15	5.429	3.836
11.05	3550	993	2700	0.458	2.66	7.754	30.480
11.05	3550	1243	2700	0.430	4.17	11.929	28.466
14.80	3550	1243	2700	0.430	4.17	11.929	28.466
14.80	3550	1532	2700	0.385	6.34	17.570	25.573
19.48	3550	1532	2700	0.385	6.34	17.570	25.573
19.48	3550	1670	2700	0.358	7.53	20.440	23.992
25.33	3550	1670	2700	0.358	7.53	20.440	23.992
* from Davie	es & Schulte	eiss,1980.					

	Calculatio	on of static	and dynami	ic moduli - S6			
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
			-		Dynamic	Dynamic	Dynamic
					Gmax	Emax	-
1.01	2071	229	2180	0.494	0.11	0.341	9.198
2.27	2071	229	2180	0.494	0.11	0.341	9.198
2.27	2071	505	2180	0.468	0.56	1.634	8.608
3.84	2071	505	2180	0.468	0.56	1.634	8.608
3.84	2071	572	2180	0.459	0.71	2.081	8.399
5.81	3373	572	2700	0.485	0.88	2.624	29.540
5.81	3373	633	2700	0.482	1.08	3.209	29.274
8.27	3373	633	2700	0.482	1.08	3.209	29.274
8.27	3373	944	2700	0.457	2.41	7.020	27.507
11.34	3373	944	2700	0.457	2.41	7.020	27.507
11.34	3373	1078	2700	0.443	3.14	9.052	26.537
15.18	3373	1078	2700	0.443	3.14	9.052	26.537
15.18	3373	1244	2700	0.421	4.18	11.876	25.148
19.98	3373	1244	2700	0.421	4.18	11.876	25.148
19.98	3373	1415	2700	0.393	5.40	15.058	23.513
25.99	3373	1415	2700	0.393	5.40	15.058	23.513
* from Davie	es & Schulte	eiss,1980.					

APPENDIX EV EXCAVATABILITY

The seismic velocity of a rock formation is related to characteristics of the rock mass which include rock hardness and strength, degree of weathering and discontinuities. Usually the velocity is just one of several parameters used in the assessment of excavatability. The excavatability of a rock formation is favoured by the following factors:

- Open fractures, faults and other planes of weakness of any kind
- Weathering
- Brittleness and crystalline nature
- High degree of stratification or lamination
- Large grain size
- Low compressive strength

Weaver (1975) presented a comprehensive rippability rating chart (Fig.1) in which the p-wave velocity value and the relevant geological factors could be entered and assigned appropriate weightings. The total weighted index was found to correlate very well with actual rippability.

Rock class				IV	V
Description	Very good rock	Good rock	Fair rock	Poor rock	Very poor rock
Seismic velocity (Vp)					
(m/s)	>2150	2150-1850	1850-1500	1500-1200	1200-450
Rating	26	24	20	12	5
-					
Rock hardness	Extremely hard	Very hard rock	Hard rock	Soft rock	Very soft rock
	rock				
Rating	10	5	2	1	0
Rock weathering	Unweathered	Slightly	Weathered	Highly	Completely
		weathered		weathered	weathered
Rating	9	7	5	3	1
Joint spacing (mm)	>3000	3000-1000	1000-300	300-50	<50
Rating	30	25	20	10	5
Joint continuity	Non continuous	Slightly	Continuous-	Continuous-	Continuous-
		continuous	no gouge	some gouge	with gouge
Rating	5	5	3	0	0
Joint gouge	No separation	Slight separation	Separation	Gouge	Gouge >5mm
			<1mm	<5mm	
Rating	5	5	4	3	1
Strike and dip	Very	Unfavourable	Slightly	Favourable	Very
orientation	unfavourable		unfavourable		favourable
Rating	15	13	10	5	3
Total rating	100-90	90-70*	70-50	50-25	<25
Rippability	Blasting	Extremely hard	Very hard	Hard ripping	Easy ripping
assessment		ripping and	ripping		
		blasting			
Tractor horsepower		770/385	385/270	270/180	180
Tractor kilowatts		575/290	290/200	200/135	135

Fig.1 Rippability Rating Chart according to Weaver

Appendix F - Embankment – Pond SI Geotechnical Laboratory Test Data (Soils and Chemical)

General Notes on Soil Tests	Appendix F: 1
Soil Laboratory Tests	Figure S 1 - 23
General Notes on Chemical Tests	Appendix F: 2
Chemical Laboratory Tests	Figure C 1 - 2

IGSL Ltd Soils Laboratory

Contract Name: Talbert/Ballylongford Onshore SI

Contract No. 12239

Client: Arup Consulting Engineers

General Notes on Test Reports

- 1. Tests are carried out in general accordance with BS1377:1990.
- 2. The following abbreviations are used to denote sample types in the reports
 - D/W Small disturbed sample
 - B Bulk disturbed sample
 - U Sample provided to the laboratory in sampling tube (normally 100mm in diameter), or intact rotary core sample
 - RC Rotary Core
 - P Piston sample
- 3. Notes on classification tests
 - WS prepared by wet sieving through a 425 m test sieve
 - Nat tested as received
 - NP Non-plastic
 - MC Moisture Content
- 4. Sample descriptions are in general accordance with BS5930:1999, as required by the test method.

			:		F		+					
GSL Ltd					Ű –	Inday 19	-				Notes 1 and 1	
Materials Laboratory Unit J5, M7 Business Park			Detern	ination c	of Moisture	e Content	, Liquid	& Plastic	Limits			
Newhall, Naas Co. Kildare MAE AA6176			Tested in (accordance	with BS137	77:Part 2:19	990, claus	es 3.2, 4.3,	4.4 & 5.3		DEFAULED IN SCOPE REG NO. 1335	
Report No. R	22690	Contract	No.	M677	Contract N	ame:	[arbert/Ba	llylongford	Embankme	ent/Pond S		
Client: A	rup Consulting Eng	ineers							MUC	EllerB	7	
Samples Rece	eived: 06/03/07	Date Tes	ited:	06/03/07	Material Ty	/be:	Soil	Specificatic	ü	NA 1 AU	12 2/1/07	
Sample No. Client Ref:		Sample	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425µm	Preparation	Liquid Limit Clause	Classification (BS6930)	Description	
	1 A 1 Em Donth	- 24 8	12	37	23	14	48	WS	4.4	-0	Brown Slightly Sandy Gravelly CLAT	
A07/0290 AA925/, IFA	1A, 1.5m Depth	n m	10							-	Brown Slightly Sandy Gravelly CLAT	
A07/0292 A49262. TPA	1A, 3.5m Depth	В	12	35	19	16	20	SM	4.4		Brown Slightly Sandy Gravelly SILT	-
A07/0293 AA9248, TPA	2, 0.5m Depth	В	7.0	25	dN	đ	48	ŝ	4. 1.		Brown Slightly Sandy Gravelly CLAY	
A07(0294 A49252, TPA	2, 2.5m Depth	В	6					1410		-	Grev Slightly Sandy Slightly Gravelly CLAY	1
A07/0295 AA9239, TPA	3, 0.5m Depth	B	17	26	17	6	03	CM	t t	C L	Grev Sandy Gravelly CLAY	1
A07/0296 A49240, TPA	3, 0.5m Depth	B	14				4	0101			Grev Brown Slightly Sandy Gravelly CLAY	
A07/0299 A49225, TPA	5, 0.5m Depth	В	16	33	20	13	20		≠ .t	ן ר ס כ	Grev Slightly Sandy Gravelly CLAY	1
A07/0300 AA9230. TPA	5, 2.5m Depth	m	10	28	17	7	54	ŝ	1 .4	ן ר ס כ	Grev Brown Slightly Sandy Slightly Gravelly CLAY	T
AU7/0301 AA9222 TPA	6. 1.5m Depth	m	19	31	20	11	72	SW	4.4		Brown Slichtly Sandy Gravelly CLAY	T
A07/0303 A49214 TPA	7. 2.5m Depth	B	16	34	21	13	56	SM	4.4		Brown Slinhtly Sandy Gravelly CLAY	-
A07/0305 AA9204. TPA	8. 1.5m Depth	ß	8.0	32	21	11	23		4.4	- ר ס כ	Brown Slichtly Sandy Gravelly CLAY	1
AU7/0306 AA9205. TPA	8, 2.5m Depth	m	13	30	18	12	52	S S	4.4	L د		1
												1
												T
Notes: Preparation: V	NS - Wet sieved		Sample Type	B - bulk dis	turbed	Remarks:						
4	AR - As received			U - Undistu	rbed							
	NP - Non plastic	an evitine me	thod			Opinions an	d interpretati	ons are outsic	le the scope (of accreditati	on.	
Liquid Limit	4.3 Cone Penetrometer	one point m	ethod			The results I	elate to the	specimens ter	sted. Any ren	naining mate	rial will be retained to one more.	1
	1.4 CUIE FEILCUSION	lev		0	Compiled	λq	Date	Checked/	Approved	27	Eiching A 1	
Approved LJ Darren signatories: (Quality Manage	er) (Lab. Man	ager)	(Dep Lab. M	anager)	Я Г	arrett	15/03/07	()		$\left(\right)$	15/03/07 Ligne 2 1	1

PI.II Rev 07/05

R22690

F123 Revision 1.2 J/05/2007

A member of the RAEBURN group of companies

F123 Revision 1.2 J3/05/2007

Minera, ..., Chesham, Bucks, HP5NL

F123 Revision 1.2. J/05/2007 1

Minera. . Ne, Chesham, Bucks, HP5 1NL

A member of the RAEBURN group of companies

A member of the RAEBURN group of companies

he, Chesham, Bucks, HP5NL Minera

					Ì
					INAB
		Deterr Tested in a	mination of Particle Siz accordance with: BS1377:Part2:1 (note: Sedimentation stage not acc	e Distribution 1990 , clause 9.2 & 9.5 redited)	DEMILED M SCOPE REG NO. 135
narticla	%		Contract No: M6	77 Report No. R22691	
size	bassing		Contract: Ta	rbert/Bailylongford Embankment/Pond SI	
75	100	COBBLES	BH: TP	A1A	
63	100		Sample No. AA	.9257 Lab. Sample No. A07/025	0
20	95		Depth (m): 1.5	50 Cllent: Arup Consulting Engine	sers
37.5	6	*********	Date Received 06	/03/2007 Date Tested 06/03/2007	
28	79		Description: Br	own slightly sandy, gravelly, CLAY	
20	71	GRAVEL			
14	63		Remarks		
10	56			35 115 115 115 115 115 115	3 0 4 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8
6.3	49			0.0 0.0 0.0	
ŝ	47		100		
3.35	43		06		
8	38		80		
1.18	34		(%)		
0.6	30	SAND			
0.425	28		SSEC		
0.3	27		C, D, D,		
0.15	25		40 40		
0.063	22		erce erce		
0.031	20.9		50 50		
0.023	19.3				
0.015	17.3	SII T/CLAY			
0.009	14.0				10 100
0.007	10.6		0.0001 0.0001		GRAVEI
0.004	8.3		CLAY	S/L / Sieve size (mini) SAVUD	
0.002	7.1		2	LChecked by:	IDate: Page no:
			Compiled by:	ale.	Figure S 7
	105		J Barrett	15/03/2007	15/03/2007 1 1941 C 1
Approved	Signatories:	□ J Barrett (Tec	chnical Manager) 🗹 J Langley (Laboratory	Manager) 🗆 H Byrne (Dep Lab Manager)	

•

IGSL Ltd, M7 Business Park, Newhall, Naas, Co Kildare

		Detern Tested in a	mination of Particle Size (note: Sedimentation stage not acc	e Distribution 1990 , clause 9.2 & 9.5 credited)
particle size	% passing		Contract No: M6 Contract: Tal	r77 Report No. R22692 rbert/Ballylongford Embankment/Pond Sl
75	100	COBBLES	BH: TP	A3
63	100		Sample No. AA	(9239 Lab. Sample No. AU//0295
50	100		Depth (m): 0.5	50 Client: Arup Consulting Engineers
37.5	100	مەرىپىيىتىكە. سەرىپىيىتىكە	Date Received 06/	/03/2007 Date Tested 06/03/2007
28	98		Description: Gr	ey slightly sandy, slightly gravely, CLAT
20	96	GRAVEL		
14	92		Remarks	
10	88			0032 32 112 112 112 112 112 112 112 112 11
6.3	81			
5	78		100	
3.35	74		06	
8	69		80	
1.18	65		02 (%)	
0.6	61	SAND	buis	
0.425	59		D 1	
0.3	56		all and all all all all all all all all all al	
0.15	51		64 	
0.063	41		erce	
0.031	36.9		20	
0.023	32.9			
0.015	28.3	SII T/CLAY	2	
0.010	20.7			04 10 100
0.007	16.2		0.0001	CUT Simologia (mm) SAND GRAVEL
0.004	14.4		CLAY .	
0.002	6.8		2 	the IChecked by: Date: Page no:
			Compiled by:	Figure
	רפער		J Barrett	15/03/2007
Approved	Signatories: [」J Barrett (Tec	chnical Manager) 🗹 J Langley (Laboratory I	Manager) 🗆 H Byrne (Dep Lab Manager)

IGSL Ltd, M7 Business Park, Newhall, Naas, Co Kildare

			ST REPO	JRT	source test
		Deterr Tested in a	mination of Particle	Size Distribution art2:1990 , clause 9.2 & 9.5 tot accredited)	
particle	% nassing		Contract No: Contract:	M677 Report No. R22 Tarbert/Ballylongford Embank	693 ment/Pond SI
75	100	COBBLES	BH:	TP A5	
63	100		Sample No.	AA9230 Lab. Sample No.	A07/0300
50	100	***	Depth (m):	2.50 Cllent: Aruf	o Consulting Erigineers
37.5	93		Date Received	06/03/2007 Date 1ested U Grev slightly sandy, gravelly, (6/U3/2007 SLAY
28	88				
20	87 77	GRAVEL	Remarks		
r 5	72			93	255 33 35 35 35 35 35 35 35 35 35 35 35 3
6.3	65			0.0	
ъ	63		100		
3.35	59		06		
2	22		80		
1.18	51				
0.6	46	SAND	- Gui		
0.425	44		SSEC		
0.3	42		20 20 30 s t		
0.15	39		64 64		
0.063	33		erce		
0.033	31.3		P 20		
0.024	29.0				
0.016	25.3	SILT/CLAY	2		
0.010	19.4			01	1 10 100
0.007	14.8		0.0001 0.00		GRAVEL
0.004	11.3		CLAY	S/L / Sieve size (IIII	
0.002	7.3				acked by: [Date: Page no:
			Compiled by:		Figure S 9
	ופתן	1	J Bayrett	15/03/2007 5	
Approved	Signatories: L	□ J Barrett (Tec	chnical Manager) 🖾 J Langley (Labor	iratory Manager) 🗆 H Byrne (Dep Lap Iw	anayer <i>)</i>

IGSL Ltd, M7 Business Park, Newhall, Naas, Co Kildare

H:\Lab\Lab Report Data\c2525\PSD\PSD TPA10 2.40 -CS20666.xls : Sample ID CS20666

Chesham, Bucks, HP5 1NL Mineral Li

Chesham, Bucks, HP5 1NL Mineral L:

899			C#-	T				Contract No	C2525
CS20	TER	RA TEK	Site	TARBERT/I	BALLYLONGFO	RD EMBANKN	IENT - POND SI	Hole ID	TPA14
ple ID	Site Inv	restigation & Laboratory Service	» Client	Shannon	LNG			Depth (m)	3.90-4.00
Sam			Engineer	Arup Con	sulting Engin	eers			<u> </u>
: xis :	Г				j [Description	
39903		Particle Size	% P	assing		ŀ			
PA14 3.90 -CS2		90.0 mm 75.0 mm 63.0 mm 50.0 mm		100 100 100 94		Dark yellowis G	h brown slightly o RAVEL. Gravel is	clayey very silty v s fine to coarse.	very sandy
SD T		37.5 mm		92			Sample Prop	ortions - %	
		28.0 mm 20.0 mm		88 83		(Cobbles	1.	5
25/PS		14.0 mm		77			Gravel	46	.4
\c25;		10.0 mm 6.30 mm		72 66			Sand	27	⁷ .4
Data		5.00 mm		63 59			Clay	3	.3
sport		2.00 mm		52		· · · · ·			
ab R		1.18 mm 600 um		46 40			Particle Dian	neter - mm	
abl		425 μm		38			D100	63	.00
Ξ		212 μm		30 34			D10	0.	01
		150 µm 63 um		32 26		Uniform	nity Coefficient	37	8.6
		20 µm		14			Nat		
		6 μm 2 μm		7 3			NOTE	es	
	l								
					- , - <u>-</u>				
		Clay Fine	Medium Silt	Coarse I	Fine Medium Sand	n Coarse	Fine Med Gr	tium Coarse	Cobbles
	100			l					
	90								1
	20								
	80								
	ຮ 70 ່ວ								
	issa 60								
	ட 50 ஜ								
	tents								
g	a 30			+++++++++++++++++++++++++++++++++++++++					
4:30:(20								
07 1	10								
10/20	0								
: 30/		0.002 0.006	6 0.02	0.06	0.2	0.6	26	20	60 200
2525					Parucie a	12e - mm			
ot No C	Originato	r Checked & Approved	·····	PARTIC		ISTRIRI			
Proje	014	Jst.		BS1377:Pa	rt 2:1990 Clau	se 9.2 - Wet	Sieving	Ik	
Lab	CiVi	311007	BS137	77:Part 2:19	90 Clause 9.4	- Sedimentat	ion by Pipette		Figure S 12

. .

. .

•

Mineral L: Chesham, Bucks, HP5 1NL

•

H:\Lab\Lab Report Data\c2525\PSD\PSD TPA18 0.60 -CS20669.xls : Sample ID CS20669

Chesham, Bucks, HP5 1NL Mineral L:

	FER	RA TEK	Site	TARBER	T/BALLY	LONGFO	RD EMBANKM	IENT - POND SI	Contract No Hole ID	C2525 TPA19
	L 茲 群 Site Inv	restigation & Laboratory Service:	Client Engineer	Shanno Arup C	on LNG	g Enair	ieers		Depth (m)	0.40-0.50
5 -			1			39/			<u> </u>	
	ſ	Particle Size	% P	assing			Ν	Ion Engineerin	g Descriptior	1
		90.0 mm 75.0 mm 63.0 mm		100 100 100			Dark yellowish Grave	n brown slightly g I is fine to coarse	ravelly slightly with some co	sandy CLAY. bbles.
		50.0 mm 37.5 mm	1	100				Sample Prop	ortions - %	
5		28.0 mm		97				Cobbles		0.0
3		20.0 mm		96 96				Gravel		13.1
		14.0 mm 10.0 mm		96 95				Sand		16.9
		6.30 mm		92				Silt		45.0
		5.00 mm		91 92				Clay		25.0
		3.35 mm 2 00 mm		89 87						
		1.18 mm		85				Particle Diar	neter - mm	
		600 µm		83 82				D100		37.50
		425 μm 300 μm		o∠ 81				D60		0.02
		212 µm		79				D10		
		150 µm		78 71			Uniform	nity Coefficient		N/A
		20 µm		58			· · · · · · · · · · · · · · · · · · ·			
		6 µm		40				Not	tes	
		2 µm		25			Note: Cobb	les removed pric	or to test eqvila	lent to 24.6%
		· · · · · · · · · · · · · · · · · · ·								
		Clay Fine 1	Medium	Coarse	Fine	Mediu	m Coarse	Fine Me	dium Coan	se Cobbles
			Silt			Sand		G	iravel	
	100				111					
	90	┠━╾╴┨╺╌┤╸┤┼╎┤				+ +				<u>┤ </u>
	80						┶╋╋			
	00				\square	TIT				
	°≈ 70									
	Sing 60	┠╍╍╍╌┠──┼─┼┼┼┽┥		<u> </u>	+	+		$\left\{ \begin{array}{c} \\ \end{array} \right\}$		┼┼╂┼╢┼───┨
	ŭ 50							$\left - + + + + + + + + + + + + + + + + + + $	<u> </u>	<u> </u>
	ntage 5		1							
	19216									
	പ് 30			╶┼╌┼╌╂┥	+++		·			┼┼┠┼┼┼
	20	┠───┠─┼┼┼┼				-		┟╾┼╾┼╌┼┼┤	 	┼╌┼╂┼┼┼
3										
Ť	10				- L. L. Lawrence					
+ 1002	10									
+1 JONZINI INC : 02020	10 0	0.002 0.006	0.02	0.06	<u> </u>	0.2 Particle \$	0.6 Size - mm	2 6	20	60 200
	10 0 Originato	0.002 0.006	0.02	0.00 PART BS1377:	ICLE S	0.2 Particle S SIZE D 990 Clau	0.6 Size - mm DISTRIBU use 9.2 - Wet	2 6 TION Sieving	20	60 200

rt Datako2525(PSD/PSD TPA19_0.40 -CS20670 xls : Samule ID CS20670 H-N ahli ah Rai

Mineral L: Chesham, Bucks, HP5 1NL

.

A member of the RAEBURN group of companies

..

..

redd /	n tek	Site TAR	BERT/BALLYLO	NGFORD EMBAN	KMENT - POND SI	Contract No. Hole ID 7	C2525		
國 篇 Site Investigatio	an & Laboratory Services	Client	Shannon LNG			Depth (m) 2	2.40-2.50		
		Engineer	Arup Consultir	ng Engineers					
[Description: Sample Details	Dark yelle	owish brown gra	avelly sandy CLA Initial:	Y. Gravel is fine to Fir	o medium. nal:			
I	Diameter:			105.4 mm	10	5.0 mm			
I	Height:			115.3 mm	11	4.9 mm			
ſ	Moisture conter	nt:		11 %	12	%			
I	Bulk density:			2.28 Mg/m ³	2.3	32 Mg/m³			
I	Dry density:			2.05 Mg/m ²	3 2.0)8 Mg/m³			
:	Sample condition	on:		Remoulded as-received	l using 4.5kg com I moisture content	pactive effort a	at the		
	Saturation Sta	ge:							
·	Initial pore pres	sure coeff	icient, B:	0.69					
!	Final pore pres	sure coeff	icient, B:	0.99					
I	Duration of stage:				5 days				
1	Consolidation	stage:							
	Effective press	ure:		85 kPa					
	Duration of sta	ge:		1 day					
	Permeability s	stage:							
	Pressure differ	ence acros	ss specimen:	20 kPa					
	Mean effective	stress:		85 kPa					
	Duration of sta	ge:		4 days					
	C	Coefficier	it of permeabi	lity at 20°C,	Kv: 7.3 x 10 ^{-1.}	² m/s			
0.7									
0.6									

A member of the RAEBURN group of companies

Lab Project .

-DD	A TEV	Site TAR	BERT/BALLYLO	NGFORD EMBANKMENT	- POND SI	Contract No Hole ID	. C2525 TPA12
Site Investi	gation & Laboratory Services	Client	Shannon LNG			Depth (m)	1.50-1.60
		Engineer	Arup Consultin	g Engineers		Dopar (iii)	
	Description: Sample Details	Dark yell sized.	owish brown slig	htly sandy slightly grave Initial:	elly CLAY. (Fit	Gravel is fine nal:	to cobble
	Diameter:			105.5 mm	10	5.1 mm	
	Height:			115.6 mm	11	5.1 mm	
	Moisture conte	nt:		13 %	13	%	
	Bulk density:			2 24 Ma/m ³	2	27 Ma/m ³	
	Davidensity:			1.98 Ma/m ³	2	01 Ma/m ³	
	Sample conditi	on:		Remoulded using as-received moist	4.5kg com ture conten	pactive effort t	at the
	Saturation Sta	age:	·	0.57			
	Initial pore pres	ssure coef	ticient, B:	0.57			
	Final pore pres	sure coef	ficient, B:	0.99			
	Duration of sta	ge:		5 days			
	Consolidation	ı stage:					
	Effective press	sure:		60 kPa			
	Duration of sta	ige:		1 day			
	Permeability of	stano.					
	Pressure differ	rence acro	ss specimen:	20 kPa			
	Mean effective	stress:	•	60 kPa			
	Duration of sta	ige:		4 days			
12			nt of permeabili	ty at 20°C, Kv: 2	.0 x 10 ⁻¹	⁰ m/s	
10)						
						- Kring	
w (mL	۶ 						
tive Flc	i			*			
umulat	- - -						
õ			x				
2							
() */	l -		· · · · · · · · · · · · · · · · · · ·	al contra da no	hanna da	······································

PERMEABILITY IN A TRIAXIAL CELL BS1377 : Part 6 : Clause 6 : 1990 Figure S16

۰.

Permeability under constant head conditions in a triaxial cell A member of the RAEBURN group of companies

۰..

Originator

AB

Checked &

Approved

14

31/10/07

			Site TAF	RBERT/BAL			MENT - POND	Contract N	lo. C2525
FER	R	A TEK						Hole ID	TPA14 3.90-4 nn
截 掇 Site In	wastigo	tion & Loboratory Services	Client	Shannon	LNG			Dehrs (iii)	J.JU~+.UU
			Engineer	Arup Cor	nsulting E	Ingineers			
		Description:	Dark yel coarse.	llowish brov	vn slightly	/ clayey very s	ilty very sandy (GRAVEL. Gra	avel is fine to
		Sample Details	:			Initial:	F	-inal:	
		Diameter:				105.0 mm	1	104.8 mm	
		Height:				117.6 mm	1	117.4 mm	
		Moisture conte	nt:			11 %	1	11 %	
		Bulk density:				2.26 Mg/m ³	2	2.26 Mg/m³	
		Dry density:				2.03 Mg/m ³	2	2.04 Mg/m³	
		Sample condition	on:			Remoulded as-received	using 4.5kg com moisture conte	mpactive effo ent	rt at the
		Saturation Sta	ige:						
		Initial pore pres	ssure coe	fficient, B:		0.92			
		Final pore pres	sure coef	ficient, B:		0.92			
		Duration of sta	ge:			3 days			
		Consolidation	stage:						
		Effective press	ure:			100 kPa			
		Duration of sta	ge:			1 day			
		Pressure differ Mean effective Duration of sta	ence acro stress: ge:	oss specime	en:	20 kPa 100 kPa 4 days	···· 4 6 40 ·	-9/_	
	35	F		nt or perm		at 200, K	.v: 1.0 X 10	m/s	
	30	• • •							
							×	~	
\sim	25	t							
(mL									
<u>No</u>	20								
VeF		t t							
ulati	15	-			\prec				
Ĩ		ļ							
0	10			/					
	5								
	0	0	500	tt	1000	15 Time (min)	00	<u>2000</u>	2500
Originate	or	Checked &							

31/10/07

۰.,

Mineral Lane Chesham, Bucks, HP51NL

Figure S17

. .

Permeability under constant head conditions in a triaxial cell A member of the RAEBURN group of companies

BS1377 : Part 6 : Clause 6 : 1990

	Site TAF	BERT/BALLYLONGFORD EMBANKM	ENT - POND SI
Image: State Structure Image: Stru	Client	Shannon I NG	Hole ID IPA18
	Encineer		Depth (m) 0.60-0.70
	Ligineer		
Description:	Yellowis	brown slightly sandy gravelly CLAY	. Gravel is fine to coarse.
Sample Details:		Initial:	Final:
Diameter:		105.0 mm	104.4 mm
Height:		115.2 mm	114.4 mm
Moisture conter	nt:	20 %	19 %
Bulk density:		2.10 Mg/m³	2.12 Mg/m³
Dry density:		1.75 Mg/m³	1.78 Mg/m³
Sample condition	on:	Remoulded us as-received mo	ing 2.5kg compactive effort at the bisture content
Saturation Sta	ge:		
Initial pore pres	sure coei	icient, B: 0.85	
Final pore press	sure coef	cient, B: 0.97	
Duration of stag	je:	5 days	
Consolidation	stage:		
Effective pressu	ıre:	60 kPa	
Duration of stag	je:	3 days	
Permeability s	tage:		
Pressure differe	ence acro	ss specimen: 20 kPa	
Mean effective	stress:	60 kPa	
Duration of stag	je:	4 days	

	Site TARBERT/BALLYLON	GFORD EMBANKMENT -	POND SI Hole ID TPA19
EKKA IEK	Client Shannon LNG		Sample 2
	Engineer Arup Consulting	Engineers	Depth (m) 0.50-0.85
danaaniine da aanaa ing kanaaniiniikata aan i		<u>,</u>	
Description:	Stiff intact light olive grey	slightly sandy gravelly CL	AY. Gravel is fine to coarse.
	· · · · ·	1-11-1-	Final:
Sample Details			Filidi.
Diameter:		104.0 mm 102.5 mm	104.2 mm
neight. Meisture senter		103.5 mm	105.1 mm
Pulk density	11.	20 70 1 97 Ma/m ³	21 70
Duik density.		1.07 IVIY/11	1.51 Mg/m
Sample condition	on:	Undisturbed	
Saturation Sta	ge:		
Initial pore pres	sure coefficient, B:	0.67	
Final pore pres	sure coefficient, B:	0.99	
Duration of stag	je:	7 days	
Consolidation	stage:		
Effective press	ure:	20 kPa	
Duration of stag	ge:	1 day	
Permeability s	tage:		
Pressure different	ence across specimen:	60 kPa	
Mean effective	stress:	20 kPa	

Coefficient of permeability at

20°C, Kv: 7.6 x 10⁻⁹ m/s

)7 14:05 ek.co.uk	IP5 1NL		Site TARBERT/BALLYLONGFORD EMBANKMENT - POND SI	Contract No. C2477 Hole ID TPA1A
10/20(cks, F	日本 Site Investigation & Laboratory Services	Client	Sample A07/0291
3Ú	m, Bu		Shannon Ling	Depth (m) 1.50
_	d, Chesha	Specimen Details		
	rsham Roa	Description	Olive brown slightly sandy gravelly CLA coarse.	Y. Gravel is fine to
	Mineral Lane, Ame	Preparation	Passed through a 2mm sieve with 52%	retained
•.		Plastic Limit Initial Wet Density Initial Dry Density	16.6 % 2.28 Mg/m ³ 1.95 Mg/m ³	

÷. :

Terra Tu∵No: CS19914 Issue 1

Hydraulic Head	Volume	Duration of Flow	Rate of Flow	Appearance	e of Water	Turbidity
(mm)	Collected (mL)	(s)	(mL/s)	From Side	From Top	Turbidity
50	10	190	0.05	Perfectly clear	Perfectly clear	None
180	25	27	0.93	Perfectly clear	Clear	None
380	25	9	2.78	Clear	Barely visible	No discernable particle

Dispersibilty

Sketch of Hole After Test

Diameter of Hole After Test

Direction of Flow ÷

1.5

Dispersion Category

ND3

mm

ek.co.uk P5 1NL		Site TARBERT/BALLYLONGFORD EMBANKMENT - POND SI	Contract No. C2477 Hole ID TPA3
.еrra-te icks, H	ICKKA IEK I Site Investigation & Laboratory Services	Client	Sample A07/0208
www. am, Bu		Snannon Ling	Depth (m) 1.50
t, Chesh	Specimen Details		
ırsham Roac	Description	Dark grey slightly sandy slightly gravelly fine to medium.	CLAY. Gravel is
neral Lane, Ame	Preparation	Passed through 2mm sieve with 19% re	etained
Ĩ			
	Plastic Limit	14 %	
	Initial Wet Density	2.48 Mg/m³	
• •	Initial Dry Density	2.18 Mg/m³	

3r '10/2007 14:04

Hydraulic Head	Volume	Duration of Flow (s)	Rate of Flow (mL/s)	Appearance of Water		Turkidia
(mm)	Collected (mL)			From Side	From Top	Turbicity
50	10	27	0.37	Clear	Barely visible	No individual particles
180	25	17	1.47	Slightly dark	Moderately dark	No individual particles

Dispersibilty

Sketch of Hole After Test

Diameter of Hole After Test

2 mm

Direction of Flow

Dispersion Category

ND3

Terra T... No: 19915

	Originator	Checked & Approved	Determination of Dispersibility by Pinhole Method	T	
Issue 1		LA 31/10/07	BS1377: Part 5: 1990 Clause 6	''K	Figure S21

0/2007 14:03 erra-tek.co.uk Me. HP5 1NI	P5 1NL		Site TARBERT/BALLYLONGFORD EMBANKMENT - POND SI	Contract No. C2477 Hole ID TPA6
	cks, H	IEKKA IER IIII Investigation & Laboratory Services	Client	Sample A07/0301
ar. Mww.			Snannon LNG	Depth (m) 1.50
-	d, Chesha	Specimen Details		
	rsham Roa	Description	Olive brown slightly sandy slightly grave fine to medium.	elly CLAY. Gravel is
	Mineral Lane, Ame	Preparation	Passed through a 2mm sieve with 18%	retained
		Plastic Limit	19.8 % 2.23 Mg/m³	
•		Initial Dry Density	1.86 Mg/m³	

Hydraulic Head	Volume) Duration of Flow (s)	Rate of Flow (mL/s)	Appearance of Water		Turbidity
(mm)	Collected (mL)			From Side	From Top	Turbicity
50	10	14	0.71	Perfectly clear	Clear	No individual particles
180	10	8	1.25	Clear	Barely visible	No individual particles
380	25	10	2.50	Barely visible	Barely visible	No individual particles

Dispersibilty

Sketch of Hole After Test

Diameter of Hole After Test

1.5 mm

Dispersion Category

ND3

No: 19916

•

Te., No	Originator	Checked & Approved	Determination of Dispersibility by Pinhole Method	T.	
Terra si Issue 1	OL	31/10/07	BS1377: Part 5: 1990 Clause 6		Figure S22

-						
m. Jrra-tek.co.uk 1, Búcks, HP5 1NL		Site	Contract No. C2477			
	TEDDA TEK	TARDER TALL TLONGFORD ENGBANKMENT - FOND ST	Hole ID TPA8			
	Xim K A K A T A K A K A K A K A K A K A K A	Client Changes I NC	Sample A07/0305			
		Snannon Livg	Depth (m) 1.50			
w Id, Cheshan	Specimen Details					
ersham Roe	Description	Olive brown slightly gravelly slightly sandy CLAY. Gravel is fine to medium.				
Mineral Lane, Ame	Preparation	Passed through a 2mm sieve with 71%	retained			
	Plastic Limit	16 %				
	Initial Wet Density	2.31 Mg/m ³				
	Initial Dry Density	1.99 Mg/m³				

Hydraulic Head	Volume	Duration of Flow	Rate of Flow	Appearance of Water		Turbidity
(mm)	Collected (mL)	(s)	(mL/s)	From Side	From Top	Turbidity
50	10	328	0.03	Perfectly clear	Clear	None
180	10	11	0.91	Clear	Barely visible	No individual particles
380	25	10	2.50	Slightly dark	Moderately dark	Some discernable particles

30/10/2007 14:03

Dispersibilty

Sketch of Hole After Test

Figure S23

Diameter of Hole After Test

1.5 mm

Dispersion Category

ND3

 Originator
 Checked & Approved
 Determination of Dispersibility by Pinhole Method
 Tik

 OL
 1.4 31/10/07
 BS1377: Part 5: 1990 Clause 6
 Tik

Certificate of Analysis

Date: 21/03/2007 2139 Certificate Number: 07-10345 Client: IGSL Ltd Industrial Estate Newbridge Co. Kildare Our Reference: 07-10345 **Client Reference:** M677 Contract Title: Tarbert / Ballyloncford Embankment - Pond S.I. **Description:** 7 soil samples Date Received: 12/03/2007 Date Started: 12/03/2007 Date Completed: 21/03/2007 Identified by prefix DETSn, details available upon request. **Test Procedures:** Notes: Observations and interpretations are outside the scope of UKAS accreditation * denotes test not included in laboratory scope of accreditation \$ denotes tests completed by approved subcontractors I/S denotes insufficient sample to carry out test N/S denotes that the sample is not suitable for testing Solid samples will be disposed 1 month and liquids 2 weeks after the date of issue of this test certificate Approved By:

Authorised Signatories:

Rob Brown Business Manager

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham. DH8 5PY Tel: 01207 582333 • Fax: 01207 582444 • Email: info@dets.co.uk • www.dets.co.uk

Summary of Chemical Analysis Soil Samples

Our Ref: 07-10345 Client Ref: M677 Contract Title: Tarbert / Ballyloncford Embankment - Pond S.I.

		Lab No.	69610	69611	69612	69613	69614
		Sample Ref	TPA1A	TPA3	TPA5	TPA5	TPA7
		Depth	1.50	0.50	0.50	2.50	2.50
		Other Ref	A07/0290	A07/0296	A07/0299	A07/0300	A07/0303
		Sample Type					
Test	Units	DETSxx					
Chloride	g/l	DETS 055	0.04	0.02	0.05	0.03	0.02
Sulphate Aqueous Extract as SO4	g/i	DETS 076	0.01	0.09	0.01	0.01	< 0.01
рH		DETS 008	8.1	8.2	8.7	8.9	8.1

Derwentside Environmental Testing Services Ltd

. •

. .

. ,

Summary of Chemical Analysis Soil Samples

Our Ref: 07-10345 Client Ref: M677

٠.

۰^۰ .

Contract Title: Tarbert / Ballyloncford Embankment - Pond S.I.

		Lab No.	69615	69616
		Sample Ref	TPA8	TPA1A
		Depth	2.50	3.50
		Other Ref	A07/0306	A07/0292
		Sample Type		
Test	Units	DETSxx		
Chloride	g/l	DETS 055	0.02	0.01
Sulphate Aqueous Extract as SO4	g/i	DETS 076	< 0.01	< 0.01
рН		DETS 008	8.0	8.7

Derwentside Environmental Testing Services Ltd

. •

•

Appendix G - Embankment – Pond SI Site Location Maps

Exploratory Hole Location Plan

- provided by the Engineer

Drawing SK – 049A

Appendix H - Embankment – Pond SI Groundwater Monitoring Installation Details

Groundwater Monitoring Installation Details	Figures H1 – H4
General Notes on Installations	Pg H1

National Irish Grid						ВН Тур	e & No.	RC-A1				
		Mater	Jce		DC .	Page Nu	mber	Page 2 of 2				
Ground Level (z) 13.91mOD Malin	Soli/ Sai	mple	nrrei		al lo	Total De	oth (m)	16.7m				
Upstand(s) (z) P1 = 14.22mOD P2 = 14.18mOD		•	ater occ	6	- graphic	Date drill Logged b Date dra	ed: by: wn:	<u>(</u> OM)				
Borehole Design & Completion		Depth	wpuno.	epth (m	eology	Drilled by Drilling E	: quipment:	Millenium Dri Rotary Core	illing			
(Minerex (AC) 22/11/07)	No.	Interval	Q	ă	Ğ	Hole OD		78mm (3")				
P1 P2						Descrip	tion (IGSL 18	/04/07)	Interpretation/ Comments			
				11.0 11.0 12.0 13.0 14.0 15.0 16.0 16.7 16.7		SILTSTON locally stro weak, thinl within), dau grey, fine g interbedde and locally (Log suppl	SILTSTONE, moderately strong to locally strong and locally moderately weak, thinly bedded (laminations within), dark grey to black and locally grey, fine grained, SILTSTONE with interbedded shale. Fresh to slightly and locally moderately weathered. (Log supplied by IGSL)					
				17.0— — —		EOH = 16						
				_								
				18.0								
				=								
				_								
Well Head Completic)n	legend		20.0			Hydrological an	d Hydrogeologic	l cal Impact			
	// 1		A Phreatic W Vater inflo	/ater Table w		Title	Assessment of Terminal Develo	the Proposed Slopment at Ballyl	hannon LNG ongford, Co. Kerry			
Protective Steel			27mm OD	/18mm ID (3	/4")	Client	Arup Consulti	ng Engineers				
	NDS 1m		JPVC Slot	ted casing		MEL Do	cument No.	1946-024	(Figure H1, 2 of 2)			
Concrete Plinth Concrete Plinth Ground Level Bentonite pellet seal Concrete Plinth P1 + 0.31m P2 + 0.27m Above GL (agl) Concrete Plinth P2 + 0.27m Above GL (agl) Concrete Plinth P2 + 0.27m Above GL (agl) Concrete Plinth P2 + 0.27m Above GL (agl) Concrete Plinth Concrete Plint			'18mm ID (3/ ng ck, nominal 2 r ic – Neutral p seal	'4") ?-5mm 0H)	C	Environmental Li						

National Irish Grid						ВН Тур	e & No.				
	o :::		e		D	Page Nu	Page Number Page 1 of 2				
Ground Level (z) 7.08mOD Malin	Soil/ Sai	water mple	nrrer	u)	- graphical lo	Total De	oth (m)				
Upstand(s) P1 = 7.36mOD P2 = 7.32mOD P3 = 7.29mOD			vater occi			Date drill Logged b Date dra	ed: by: wn:	07 OM)			
Borehole Design & Completion		Depth	wpuno.	pth (m ology		Drilled by Drilling E	: quipment:	Millenium Drilling Rotary Core			
(Minerex (AC) 22/11/07)	No.	Interval	ō	ă	Ğ	Hole ID:		78mm (3")			
P1 P2 P3						Descript	tion (IGSL 16	-18/04/07)	Interpretation/ Comments		
0.5 -1.0 -1.4						Observed Gravelly C (Log suppl	by Driller as: LAY ied by IGSL)		Topsoil / Aquitard		
-1.8				1.7_ 2.0- 3.0- 4.0- 4.9_		Strong to r bedded, gr medium gr slightly and <i>(Log suppl</i>	noderately strong rey to locally dark ained, SILTSTOI d locally moderate <i>ied by IGSL)</i>	Aquitard			
5.3 5.8 8.0 9.0 -9.5				6.0 7.0 9.0 10.0		Strong to n thinly bedd dark grey t (6.3m – 6.5 interbedde locally sligi fractures th <i>(Log suppl</i>	noderately strong led (cross beddeo o black, fine to lo Pm) grained, SIL d grey sandstone ntly weathered (h nroughout 0.5cm <i>ied by IGSL)</i>	, medium to d laminations), cally medium ISTONE with e. Fresh to airline – 1cm apart).	Aquitard		
Well Head Completic	n	Legenc	hreatic Wa	iter Table		Title	Hydrological an Assessment of Terminal Develo	d Hydrogeologio the Proposed Si opment at Ballyl	cal Impact hannon LNG ongford, Co, Kerry		
Protective Steel			Vater inflow	1		Client	Arup Consulti	na Engineers			
Cover	IDS		27mm OD/1 IPVC Slotte	8mm ID (3 ed casing	/4")						
Concrete Plinth		2 u	7mm OD/1 PVC casing	8mm ID (3/ g	(4")	MEL Do	ocument No.	1946-024	(Figure H2, 1 of 2)		
Ground Level Above GL Ground Level 0.30m Bentonite pellet (Not to scale)			?-5mm 0H)	C	Environmental Limited						

National Irish Grid						ВН Тур	e & No. RC-A2					
			e	(- graphical log	Page Nu	nber Page 2 of 2					
Ground Level (z) 7 08mOD Malin	Soil/	Water nnle	Irrer			Total De	oth (m)	19.9m				
Upstand(s) (z) P1 = 7.36mOD P2 = 7.32mOD P3 = 7.29mOD	, Ou	npio	ater occi			Date drill Logged b Date dra	ed: by: wn:	16-18/04/200 IGSL 03/12/2007 (1/2007 107 (OM)			
Borehole Design & Completion		Depth	wpuno	pth (m	eology	Drilled by Drilling E	y: Millenium Drilling Equipment: Rotary Core					
(Minerex (AC) 22/11/07)	No.	Interval	Ģ	De	Ğ	Hole ID:		78mm (3")				
P1 P2						Descript	tion (IGSL 16	-18/04/07)	Interpretation/ Comments			
				11.0 11.0 12.0 13.0 14.0 15.0 16.0 16.7 17.0 18.0 18.0 19.0 19.0		Strong to r thinly bed dark grey f (6.3m – 6. interbedde locally slig fractures ti (continuted (Log supp)	noderately strong ded (cross bedde to black, fine to lo 9m) grained, SIL ad grey sandstond htly weathered (f hroughout 0.5cm <i>d</i>) <i>lied by IGSL)</i>	g, medium to d laminations), ocally medium TSTONE with e. Fresh to nairline – 1cm apart).	Aquitard			
		ļ		20.0		EOH = 19.	.9m					
VVell Head Completio	on) Phreatic W	ater Table		Title	Hydrological an Assessment of Terminal Develo	a Hydrogeologic the Proposed Sl opment at Ballyl	al Impact nannon LNG ongford, Co. Kerry			
Protective Steel		Wate		W (18mm ال (2	(//")	Client	Arup Consulti	ing Engineers				
Cover UPSTANDS P1 + 0.28m			PVC Slot	ted casing	· • ·	MEL Do	cument No.	1946-024	(Figure H2, 2 of 2)			
Concrete Plinth Ground Level Bentonite pellet Seal Concrete Plinth P2 + 0.24m P2 + 0.24m P2 + 0.24m P2 + 0.21m Above GL 0,30m (Not to scale) Concrete Plinth P2 + 0.24m P2 +				C	Environmental Limited							

National Irish Grid						ВН Тур	pe & No. RC-A3					
	-		e		ð	Page Nu	mber	Page 2 of 2				
Ground Level (z) 6 38mOD Malin	Soil/	Water	Irrer		al lo	Total De	pth (m) 18.1m					
Upstand(s) (z) P1 = 6.65mOD P2 = 6.61mOD		inpie	ater occu		- graphic	Date drill Logged k Date dra	ed: 19-20/04/2007 yy: IGSL wn: 03/12/2007 (OM)					
Borehole Design &		Depth	Mpunc	pth (m	ology	Drilled by Drilling E	: quipment:	Millenium Dri Rotary Core	nium Drilling v Core			
(Minerex (AC) 21/11/07)	No.	Interval	Ğ	De	Ge	Hole OD	:	78mm (3")	(3")			
P1						Descript	tion (IGSL 19	-20/04/07)	Interpretation/ Comments			
11.6 12.1 -13.1 -13.1 EOH = 16.4m						Strong to k 11.4m) and medium to bedded, gr locally med interbedde (continued (Log suppl EOH = 18.	ocally very strong d locally moderate thinly (cross lam rey, dark grey and dium grained SIL d shale. Freshly v <i>)</i> <i>fied by IGSL)</i>	g (10.9m – ely strong, inated) d black, fine to TSTONE with weathered.	Aquitard			
Wall Hood Completi		Logon		20.0		1	Hudrological on	d Hydrogoologi				
Lockable Flip Cover	ווכ		A Phreatic W	ater Table		Title	Assessment of Terminal Develo	the Proposed Slopment at Ballyl	hannon LNG ongford, Co. Kerry			
Protective Steel			27mm OD	/18mm ID (3	/4")	Client	Arup Consulti	ing Engineers				
Concrete Plinth	NDS 27m 23m		27mm OD/	/18mm ID (3/	(4")	MEL Do	ocument No.	1946-024	(Figure H3, 2 of 2)			
Ground Level Above C Bentonite pellet (Not to s	.30m icale)	m 27mm OD/18mm ID (3/4") uPVC casing om Gravel pack, nominal 2-5mm in diameter (Siliciclastic – Neutral pH) ate; Sentonite seal			2-5mm DH)	Environmental Limited						

National Irish Grid						ВН Тур	e & No.	RC-A4				
			JCe		ð	Page Nu	mber	Page 2 of 2				
Ground Level (z) 11.69mOD Malin	Soli/	water mple	urrer		al Ic	Total De	Pepth (m) 16.9m					
Upstand(s) (z) P1 = 12.01mOD P2 = 11.96mOD			ater occi		- graphic	Date drill Logged b Date dra	ed: oy: wn:	OM)				
Borehole Design & Completion		Depth	wpuno	pth (m	eology	Drilled by Drilling E	ed by: ng Equipment: Millenium Drilling Rotary Core					
(Minerex (AC) 21/11/07)	No.	Interval	ū	De	g	Hole OD		-				
P1						Descript	tion (IGSL 21	/04/07)	Interpretation/ Comments			
11.2 11.5 -12.0 15.0 EOH = 16.4m	11.2 11.0 11.5 11.0 12.0 12.0 13.0 14.0 15.0 16.4					Strong to n laminated) black, fine with interbo Freshly to weathered (continued (Log suppl	noderately strong bedded, grey, da to coarse grained edded fine graine locally slightly / m <i>ied by IGSL)</i>	g, thinly (cross ark grey and d SILTSTONE ad shale. hoderately	Aquitard			
				17.0—		EOH = 16.9m						
				_								
				19.0								
				-								
		1.0000	1	20.0			Hudrological	d Hudrogoologia				
Lockable Flip Cover	JN		A Phreatic W	ater Table		Title	Assessment of Terminal Develo	the Proposed Sl	nannon LNG ongford, Co. Kerry			
Protective Steel			27mm OD	w /18mm ID (3	/4")	Client	Arup Consulti	ng Engineers				
Cover UPSTANDS P1 + 0.32m P3 + 0.37m			PVC Slot	ted casing '18mm ID (3/	(4")	MEL Do	ocument No.	1946-024	(Figure H4, 2 of 2)			
Ground Level	Gravel pack, nominal 2-5mm in diameter (Siliciclastic – Neutral pH)				Environmental Limited							

GENERAL LEGEND, ABBREVIATIONS AND INSTALLATION DETAILS

BEDROCK							
Metamorphic bedrock	OVERBURDEN (Description uses BS 5930 and GSI guidelines)						
Sandstone bedrock							
Siltstone bedrock	COBBLES (60 to 200mm)						
Mudstone bedrock	GRAVEL (Homogeneous larger sized						
Limestone bedrock							
COLOUR GRAIN SIZE (Soil)	SAND (General, if without grain size description) Particle sizes: 2 to 0.06mm. Three sub-categories distinguishable to the eye)						
Light Grey Gy_1 $Clay (\% \text{ of })$ $C(20)$ Madium Cray Gy_1 $Silt (\% \text{ of })$ $Si(20)$	Coarse SAND (2-0.6mm)						
Meaning Gree G_{y_m} $GreetG_{3(20)}Dark GreeyGy_dSand (\% of)Sd(20)PhysicsBl_{cov}Gravel (\% of)G(20)$	Medium SAND (0.6-0.2mm)						
Bide/grey Brody Status (verty) Status (verty) Orange/Brown Or-Bn Sand (Fine to Medium) Sd _{F-M}	Fine SAND (0.2-0.06mm)						
Black Bk Gravel (Fine to Coarse G _{F-C SA-A} Subangular to angular)	SILT (0.06 - 0.002mm)						
MONITORING POINT COMPLETIONS							
TS/C1/PH1 Terminal Site/Couple no./Phreatic no.							
PR/C2/P2 Peat Repository/Couple no./Piezometer no. H7 Von Post humification scale	CONCRETE						
Push-on cap 18mm ID / 27mm OD screen 18mm ID / 27mm OD casing	CRUSHED STONE or AGGREGATE or TARMACADAM						
18mm ID / 27mm OD tasing ▼ Drive cone	LANDFILL (eg plastic, glass, wood, domestic waste, concrete etc.)						
P2 PH1 Piezometer no. and Phreatic tube no. Bentonite pellets	FILL (unspecified)						
Gravei pack, nominal 2-5mm in diameter Wet and damp Static water table	COLLAPSED FORMATION (with possible voids)						
PLAN SKETCHES	LOSS (Blank - white)						
TP1 Hand dug trial pits / Shallow pit excavations (JCB)	22222						
100 BG FID in ppm Hydrocarbons with BG = background	TOP SOIL						
99.791 Reduced levels - maOD Malin	PEAT (General) (with descriptions such as						
Oil pipeline	colour, plant remains evident, distinct H ₂ S smell etc) (H (Von Post) value associated commonly)						
MONITODING DOINT DESIGN FOR DEAT SUBSOILS							
The cap is loosely fitted to allow easy removal. The piezometer is la A small hole is drilled in the side	Push-on, female cap abelled using indellible ink inside and outside the cap. to enable air movement in and out of the piezometer.						
	Casing up-stand						
The upstand is the height of the casing above ground level in m surface water circumstances. The piezometer number is scrapped the writing on the cap wears off. Upstands vary from 0.3 to 1.0m in	neters. The height depends on local groundwater and d onto the side of the casing near the cap as with time n height. The convention is allow a higher upstand for						
	those piezometers positioned at a higher level.						
The casing is black or dark grey coloured, flush-threaded,	, uPVC. The OD is 26.80mm and the ID is 18.40. The casing is flush-threaded to the piezometer tip.						
This section is installed opposite the required formation. There are two sections to the piezometer tip. The inner tube section is 18.40mm ID, white in colour and involves extruded microporous polyethylene. The outer comprises grey or black coloured uPVC with 10 x 0.013m diameter holes per 0.10m of piezometer tip. Therefore the surface area exposed to the formation (peat) is small. The piezometer tube tip is flush-threaded, either male or female, to the piezometer icasing. Threaded part is 0.03m long. The phreatic tube tip is longer than the piezometer tube tip to allow for greater water level fluctuations.							
This is grey coloured, solid, uPVC, pushed or screwed into the ground is soft, a pu	tube or piezometer tip. No glue has been used. If the ush-in button cap may be used instead of a drive cone.						
NOTES:- The phreatic tubes are pushed by hand into the peat. The piezomete has been formed using overburden drilling (Cobra or Percussion Wind three main functions: water table measurements, water sampling, per	ers are pushed or driven into the peat and mineral soil after a narrow diameter hole dow Sampler) / coring equipment (Gouge corer). The tubes and piezometers have rmeability measurements Pg H: 1						
	Minerex						
	Environmental Limite						

Appendix I - Embankment - Pond SI Groundwater Levels

Hydrological and Hydrogeological Impact Assessment of the Proposed Shannon LNG Terminal Development at Ballylongford, Co. Kerry

Non-variable Monitoring Data							Variable Monitoring Results						
			Monitoring point type	HYDRO- / GEO UNIT	HABITATS & DESIGNATIO	DN		Date	Time	Water levels			Comments
Monitoring point ID	Easting Differential / Hand-held GPS (For Mapinfo Use)	Northing Differential / Hand-held GPS (For Mapinfo Use)		Monitored	Habitat Monitored	Fossitt Habitat Code	Designation (SAC, NHA, SAC & NHA, None)			Ref mOD (top of Plastic Casing / top of SG)	WL mbRef	WL mOD (Malin)	
RC-A1-P1	101865.440	148080.150	Piezometer	BEDROCK	Spoil or Bare Ground - Area cleared by local farmer 2007	ED2	None	23/11/07		14.22	7.82	6.40	Installed 22/11/07
RC-A1-P1	101865.440	148080.150	Piezometer	BEDROCK	Spoil or Bare Ground - Area cleared by local farmer 2007	ED2	None	11/12/07	16:05	14.22	7.21	7.01	Purging not carried out - Water level too low.
RC-A1-P2	101865.440	148080.150	Piezometer	BEDROCK	Spoil or Bare Ground - Area cleared by local farmer 2007	ED2	None	23/11/07		14.18	7.80	6.38	Installed 22/11/07
RC-A1-P2	101865.440	148080.150	Piezometer	BEDROCK	Spoil or Bare Ground - Area cleared by local farmer 2007	ED2	None	11/12/07	16:05	14.18	7.18	7.00	Purging not carried out - Water level too low.
RC-A2-P1	101945.000	148166.000	Piezometer	BEDROCK	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	23/11/07		7.36	1.08	6.28	Installed 22/11/07
RC-A2-P1	101945.000	148166.000	Piezometer	BEDROCK	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	11/12/07	16:20	7.36	0.47	6.89	Purged 5 litres.
RC-A2-P2	101945.000	148166.000	Piezometer	BEDROCK	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	23/11/07		7.32	1.07	6.25	Installed 22/11/07
RC-A2-P2	101945.000	148166.000	Piezometer	BEDROCK	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	11/12/07	16:21	7.32	0.43	6.89	Purged 5 litres.
RC-A2-P3	101945.000	148166.000	Piezometer	BEDROCK	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	23/11/07		7.29	1.04	6.25	Installed 22/11/07
RC-A2-P3	101945.000	148166.000	Piezometer	BEDROCK	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	11/12/07	16:22	7.29	0.47	6.82	Purged 5 litres.
RC-A3-P1	101953.980	148220.510	Piezometer	BEDROCK	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	23/11/07		6.65	0.60	6.05	Installed 21/11/07
RC-A3-P1	101953.980	148220.510	Piezometer	BEDROCK	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	11/12/07	14:16	6.65	0.00	6.65	Artesian upwelling.
RC-A3-P2	101953.980	148220.510	Piezometer	BEDROCK	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	23/11/07		6.61	0.57	6.04	Installed 21/11/07
RC-A3-P2	101953.980	148220.510	Piezometer	BEDROCK	Wet Grassland / Improved Agricultural Grassland	GS4 / GA1	None	11/12/07	14:17	6.61	0.00	6.61	Artesian upwelling.
RC-A4-P1	102010.830	148239.450	Piezometer	BEDROCK	Improved Agricultural Grassland	GA1	None	23/11/07		12.01	6.15	5.86	Installed 21/11/07
RC-A4-P1	102010.830	148239.450	Piezometer	BEDROCK	Improved Agricultural Grassland	GA1	None	11/12/07	13:06	12.01	4.78	7.23	Purged 5 litres.
RC-A4-P2	102010.830	148239.450	Piezometer	BEDROCK	Improved Agricultural Grassland	GA1	None	23/11/07		11.96	5.96	6.00	Installed 21/11/07
RC-A4-P2	102010.830	148239.450	Piezometer	BEDROCK	Improved Agricultural Grassland	GA1	None	11/12/07	13:07	11.96	5.00	6.96	Purged 5 litres.

Addendum - Embankment – Pond SI Photographs

Trial Pits Rotary Coreholes

TPA1 Spoil

TP A1 Digging Face

TP A1 Digging face

TP A1 Digging Face

TP A2 Digging Face

TP A2 Digging face

TP A2 Digging Face

TP A2 Spoil

TP A3 Digging Face

TP A3 Digging face


```
TP A3 Digging Face
```


Project No: 12239

Tarbert/Ballylongford Embankment – Pond SI Trial pits

TP A3 Spoil

TP A4 Digging Face

Tarbert/Ballylongford Embankment – Pond SI Trial pits

TP A4 Sidewall

TP A4 Digging Face

TP A5 Sidewall

TPA5 Digging Face

TP A5 Spoil

TPA6 Digging Face

TPA6 Digging Fce

TPA6 Spoil

TP A7 Sidewall

TPA7 Digging Face

TPA7 Spoil

TPA8 Spoil

TP A8 Sidewall

TP A8 Digging Face

TP A9 Digging face 1

TP A9 Digging face 2

TP A9 Sidewall 1

TP A9 Sidewall 2

TP A10 Digging Face 1

TP A10 Digging Face 2

TP A10 Side Wall

TP A10 Spoil


```
TP A11 Digging Face 1
```


TP A11 Digging Face 2

TP A11 Digging Face 3

TP A11 Spoil

TP A12 Digging Face 1

TP A12 Digging Face 2

TP A12 Sidewall

TP A12 Spoil

TP A13 Digging Face 1

TP A13 Digging Face 2

TP A13 Side wall 1

TP A13 Spoil

TP A14 Digging Face 1

TP A14 Digging Face 2

TP A14 Sidewall

TP A14 Spoil

Project No: 12239

TP A15 Digging Face 1


```
TP A15 Digging Face 2
```


TP A15 Sidewall

TP A15 Spoil

TP A16 Digging Face 1

TP A16 Digging Face 2

TP A16 Sidewall

TP A16 Spoil

TP A17 Digging Face 1

TP A17 Digging Face 2

TP A17 Spoil


```
TP A18 Digging Face 1
```


TP A18 Digging Face 2

TP A18 Sidewall

TP A18 Spoil

Project No: 12239


```
TP A19 Digging Face 1
```


TP A19 Digging Face 2

TP A19 Digging Sidewall

TP A19 Spoil

TP A20 Digging Face 1

TP A20 Digging Face 2

TP A20 Sidewall

TP A20 Spoil

TP ADD1 Digging Face 1

TP ADD1 Digging Face 2

Project No: 12239

Tarbert/Ballylongford Embankment - Pond SI Trial pits

TP ADD1 Sidewall

TP ADD1 Spoil

IGSL Limited Unit F, M7 Business Park Naas, Co. Kildare Tel: 045 846176 / 045 846180 / 045 846182 Fax: 045 846187 E-mail: info@igsl.ie

Embankment – Pond SI Rotary Corehole Photographs

RC A1 box 1 of 3

RC A1 box 2 of 3

RC A1 box 3 of 3

RC A2 box 1 of 7

RC A2 box 2

RC A2 box 3 of 7

RC A2 box 4 of 7

RC A2 box 5 of 7

RC A2 box 6 of 7

RC A3 box 1 of 5

RC A3 box 3 of 5

RC A3 box 4 of 5

RC A3 box 5 of 5

RC A4 box 1 of 4

RC A4 box 2 of 4

RC A4 box 3 of 4

RC A4 box 4 of 4

Appendix A - Main Onshore SI Geophysical Survey

APEX Geoservices Ltd. Geophysical & Geological Consultants

REPORT

ON THE

GEOPHYSICAL SURVEY

FOR THE

TARBERT/BALLYLONGFORD MAIN ONSHORE SI

FOR

IRISH GEOTECHNICAL SERVICES LTD.

Kilanerin Gorey Co. Wexford

 Tel.
 0402-21842

 Mobile:
 087-9365000

 Fax:
 0402-21843

 Email:
 info@apexgeoservices.ie

PRIVATE AND CONFIDENTIAL

THE FINDINGS OF THIS REPORT ARE THE RESULT OF A GEOPHYSICAL SURVEY USING NON-INVASIVE SURVEY TECHNIQUES CARRIED OUT AT THE GROUND SURFACE. INTERPRETATIONS CONTAINED IN THIS REPORT ARE DERIVED FROM A KNOWLEDGE OF THE GROUND CONDITIONS, THE GEOPHYSICAL RESPONSES OF GROUND MATERIALS AND THE EXPERIENCE OF THE AUTHOR. APEX GEOSERVICES LTD. HAS PREPARED THIS REPORT IN LINE WITH BEST CURRENT PRACTICE AND WITH ALL REASONABLE SKILL, CARE AND DILIGENCE IN CONSIDERATION OF THE LIMITS IMPOSED BY THE SURVEY TECHNIQUES USED AND THE RESOURCES DEVOTED TO IT BY AGREEMENT WITH THE CLIENT. THE INTERPRETATIVE BASIS OF THE CONCLUSIONS CONTAINED IN THIS REPORT SHOULD BE TAKEN INTO ACCOUNT IN ANY FUTURE USE OF THIS REPORT.

PROJECT NUMBER	AGL06246		
AUTHOR	CHECKED REPORT STATUS DATE		DATE
EURGEOL YVONNE O'CONNELL P.GEO., M.Sc (GEOPHYSICS)	EURGEOL PETER O'CONNOR P.GEO., M.SC (GEOPHYSICS), DIP. EIA MGT.	FINAL	11 th January 2008

TABLE OF CONTENTS

A1. A1.1	INTRODUCTION Survey Objectives	1 1
A1.2	Survey Methodology	1
A1.3	Site Background	1
A1.4	Report Outline	2
A2. A2.1	INTERPRETED RESULTS Electromagnetic Conductivity Surveying	3 3
A2.2	2D Resistivity Profiling	3
A2.3	Seismic Refraction Profiling	3
A2.4	Integrated Interpretation	4
A3.	CONCLUSIONS & RECOMMENDATIONS	7
A4.	REFERENCES	8

MAPS

Map A:1	Geophysical Survey Locations	1:2500
Map A:2	Electromagnetic Conductivity Contours (mS/m)	1:2500
Map A:3	Interpreted Thickness Layer 1 (m)	1:2500
Map A:4	Interpreted Thickness Layers 1 & 2 (m)	1:2500
Map A:5	Interpreted Overburden Thickness (m)	1:2500
Map A:6	Summary Map	1:2500

INTERPRETED SECTIONS

Sections A(a) to A(h)	Interpreted 2D Resistivity Profiles	1:1000/1:1250
-----------------------	-------------------------------------	---------------

APPENDICES

Appendix A:I	Geophysical Methodology
Appendix A:II	P-wave Seismic Refraction Data
Appendix A:III	S-wave Seismic Refraction Data & Gmax values
Appendix A:IV	Calculated Moduli
Appendix A:V	Excavatability

A1. INTRODUCTION

APEX Geoservices Ltd. was requested by Irish Geotechnical Services Ltd. (IGSL), on behalf of Arup Consulting Engineers, to carry out a geophysical survey as part of the site investigation for the Shannon LNG: Tarbert/Ballylongford LNG Terminal.

A1.1 Survey Objectives

The objectives of the survey were:

- v to profile variations in the bedrock topography
- v to provide the following geotechnical properties of the overburden and bedrock
 - classification of the overburden and bedrock
 - determine the consistency and density of the individual units in the stratigraphic profile
 - Dynamic Shear Modulus (Gmax)
 - Dynamic Young's Modulus (Dynamic Emax)
 - Dynamic Bulk Modulus

A1.2 Survey Methodology

- v Electromagnetic conductivity surveying to zone the site in terms of overburden thickness, lateral variations in overburden type, possible soft ground and backfilled areas.
- v 2D Resistivity profiling to provide information on lateral and vertical variations in overburden type and thickness, bedrock type and profile.
- v P-wave and S-wave Seismic Refraction profiling to verify overburden type, thickness and stiffness and provide information on depth to bedrock, rock type and strength.

A1.3 Site Background

The site is located between Ballylongford and Tarbert on the south coast of the Shannon Estuary. The site covers approx. 114 hectares and the survey was carried out across approx. 30.5 hectares (76.5 acres) in the northeast of the site. The topography of the survey area ranges from 2mOD along the coast to 33mOD in the southeast of the survey area.

The geological map for the area (Geology of the Shannon Estuary, Sheet 17, GSI) indicates that the site is underlain by Shannon Group mudstone, siltstone and sandstone.

As part of the site investigation a program of trial pits and boreholes was conducted by IGSL. Depths to rock from the boreholes and trial pits were made available to assist with the interpretation of the geophysical data. The locations of these trial pits and boreholes are indicated on Map A:1. Thirty three trial pits were opened (TP01 – TP31, TP8B & TP 11B). The trial pits encountered shallow rock to the northeast of the site with thicker overburden to the southwest. Twenty six boreholes were cored (RC01 - RC26). The boreholes encountered interbedded sandstone and siltstone bedrock from 0.5m to 9.8m across the site with depth to rock generally shallower to the northeast of the site with thicker overburden

to the southwest.

A1.4 Report Outline

- v The survey results are interpreted in Part A2.
- v A summary is made in Part A3.
- The locations of the geophysical readings are shown on Map A:1.
- v The Electromagnetic Conductivity values are plotted on Map A: 2.
- v Interpreted thickness of seismic Layer 1 is plotted on Map A:3.
- v Interpreted thickness of seismic Layers 1 and 2 is plotted on Map A:4.
- v Interpreted overburden thickness is plotted on Map A:5.
- v The survey results are summarized on Map A:6.
- v The interpreted resistivity and seismic data are shown on Sections A(a) to A(h).
- v The interpreted P-wave seismic data are contained in Appendix A:II.
- v The interpreted S-wave seismic data are contained in Appendix A:III.
- v Dynamic Moduli calculations are contained in Appendix A:IV.
- v Excavatability ratings are shown in Appendix A:V.

A2. INTERPRETED RESULTS

A2.1 Electromagnetic Conductivity Surveying

The results of the EM31 Conductivity Survey have been contoured and plotted on Map A:2. The recorded conductivity values ranged from 1 to 13.3 mS/m. The data have generally been interpreted on the following basis:

Conductivity (mS/m) Interpretation of 0 – 6m Below Ground Level	
1 - 3	Thin overburden (<3m) or localized clayey gravel & sand/gravel deposits
3 – 13.3	Thick overburden (3-9m)

28% of the values were \leq 3 mS/m and 72% of the values were >3 mS/m. In conjunction with the 2D resistivity, seismic, borehole and trial pit data, the low conductivity values (1-3 mS/m) have been interpreted as indicating thin overburden (<3m) in the centre and north of the Conductivity Survey area and localized clayey gravel & sand/gravel deposits in the south of the Conductivity Survey area.

A2.2 2D Resistivity Profiling

Eight 2D Resistivity profiles were recorded across the site (Map A:1, Sections A(a) to A(h)). The recorded resistivity values, in conjunction with the trial pit and borehole data, have been interpreted on the following basis:

Resistivity (Ohm-m)	Interpretation
50 - 250	Sandy gravelly Clay
250 - 525	Clayey Sand/Gravel
525-1000	Sand/Gravel
385 - 2000	Weathered Bedrock
50 - 385	Mudstone / Siltstone
385 - 2000	Sandstone

A2.3 Seismic Refraction Profiling

Twenty three P-wave seismic spreads were recorded across the site (Map A:1, Appendix A:II). The seismic survey also included the measurement of the shear wave (S-wave) velocity depth profile using the Multichannel Analysis of Surface Waves (MASW) method.

The P-wave seismic data, in conjunction with the trial pit and borehole data, have been interpreted as indicating three velocity layers as follows:

Layer	P-wave Velocity (Vp) Range (m/s)	Average Vp Velocity (m/s)	Interpretation
1	284-787	508	Soft to Firm or Loose to Medium Dense Overburden
2 815-2222 1467		1467	815-1400 m/s Firm to Stiff Overburden or Highly to Moderately to Slightly Weathered Bedrock
			1400-2222 m/s Moderately to Slightly Weathered Bedrock
3	3050-4997	3905	Slightly Weathered to Fresh Bedrock

Layer 1 P-wave velocities (Vp) would be typical of soft to firm or loose to medium dense overburden material. The interpreted thickness of Layer 1 (from the seismic data) is contoured on Map A:3.

Layer 2 Vp velocities varied significantly across the site. In conjunction with the 2D resistivity, trial pit and borehole data, velocities from 1400-2222 m/s have been interpreted as indicating moderately to slightly weathered rock while velocities from 815-1400 m/s have been interpreted as indicating firm to stiff/medium dense to dense overburden material or highly to moderately weathered rock.

The combined thicknesses of Layers 1 and 2 (from the seismic data) are contoured on Map A:4.

The recorded Layer 3 Vp velocities would be typical of slightly weathered to fresh bedrock.

The MASW signal achieved a maximum penetration of 31.7 m bgl. The measured shear wave (Vs) velocities range from 145 to 2093 m/s and the derived G_{max} values range from 46 to11825 MPa (Appendix A:III).

The Vp data were combined with the Vs data to calculate Poissons ratio, dynamic Bulk modulus and Youngs Modulus for each of the layers outlined by the Vp data analysis using the formulae from Elastic Theory presented by Davies & Schulteiss, 1980 contained in Appendix A:I. The calculated modulii are contained in Appendix A:IV.

Note: A soil density of 2180 kg/m³ (derived/calculated from lab data) and a rock density of 2700kg/m³ (derived/calculated from lab data) has been used as directed by the Engineer.

A2.4 Integrated Interpretation

The integrated interpretation of the 2D resistivity data, seismic data, trial pit and borehole data has been drawn on Sections A(a) to A(h).

Layer	Vp Velocity (m/s)	Resistivity (Ohm-m)	Interpretation	Stiffness/ Rock Quality	Estimated Excavatability
1	284-787	50-250	Sandy gravelly Clay	Soft - Firm	Diggable
		250-525	Clayey Sand/Gravel	Loose- Medium	
		525-2000	Sand/Gravel	Dense	
2	815-1400	50-250	Sandy gravelly Clay	Firm - Stiff	Diggable
		250-525	Clayey Sand/Gravel	Medium dense-	
		525-2000	Sand/Gravel	dense	
		50-525	Highly to moderately weathered rock	Poor - Fair	Rippable – Marginally Rippable
	1400-2222	385 - 2000	Moderately to Slightly weathered rock	Fair - Good	Marginally Rippable – Break/Blast
3	3050-4997	50-4997 50 - 385 Slightly weathered t Siltstone	Slightly weathered to fresh Mudstone / Siltstone	Good	Break /Blast
		385 - 2000	Slightly weathered to fresh Sandstone		

The combined geophysical data have been interpreted indicating three subsurface layers as follows:

Layer 1

The geophysical data indicates an upper layer of soft to firm sandy gravelly clay or loose to medium dense clayey sandy gravel. This layer has an approximate average thickness of 1.8m across the site and should be diggable.

Layer 2

Layer 2 Vp velocities varied significantly across the site; velocities from 815-1400 m/s were found to occur where the 2D Resistivity profiles recorded low resistivities (50-385 Ohm-m)) and have been interpreted as indicating firm to stiff sandy gravelly clay or medium dense to dense clayey sand/gravel which should be diggable. This interpretation is confirmed by the occurrence of rock at an average depth of 5.6m bgl in RC1, RC9-RC13 and RC23-RC26.

However, these velocities may also indicate rippable to marginally rippable highly to moderately weathered rock and the descriptive borehole logs would need to be reviewed to confirm the composition of this material.

Vp velocities from 1400-2222 m/s were found to occur where the 2D Resistivity profiles recorded high resistivities (385-2000 Ohm-m). These velocities have been interpreted as indicating moderately to slightly weathered rock. This interpretation is confirmed by the occurrence of rock at shallow depths in RC6, RC7 and RC14-RC22. These boreholes encountered rock at an average depth of 1.7m bgl. The descriptive borehole logs would need to be reviewed to confirm the composition of this material. The velocities for this layer indicate that this layer will be marginally rippable where seismic velocities fall below 1800 m/s and will require breaking/blasting where velocities are >1800 m/s.

The combined thicknesses of the soft to firm sandy gravelly clay or loose to medium dense clayey sandy gravel of Layer 1 and the firm to stiff sandy gravelly clay or medium dense to dense clayey sand/gravel of Layer 2 have been plotted on Map A:5. The 2D Resistivity and borehole data indicate that across Seismic Spreads 13 and 14 Layer 2 comprises both stiff sandy gravelly clay overlying probable moderately to slightly weathered rock. As the boundary between the overburden and the weathered rock cannot be distinguished due to both materials having similar velocities, the overburden thicknesses for these spreads have not been contoured on Map A:5

Layer 3

Vp velocities from 3050-4997m/s have been interpreted as indicating slightly weathered to fresh bedrock. This slightly weathered to fresh bedrock has been subdivided into two lithologies based on variations in resistivities. Low resistivities (50-385 Ohm-m) have been interpreted as indicating mudstone/siltstone bedrock and higher resistivities (385-2000 Ohm-m) have been interpreted as indicating sandstone bedrock. The velocities recorded for this layer indicate that any excavation will require breaking/blasting. In addition, excavatability will vary with marginally easier excavation expected over the mudstone/siltstone while the stronger sandstone is likely to require heavy breaking.

The interpreted overburden thickness, combining the 2D resistivity and seismic interpretations with depths to rock from the trial pit and borehole logs, is contoured on Map A:5.

The integrated interpretation is summarized on Map A:6. The combined geophysical data indicates two zones across the site:

Zone 1 indicates areas across the site where the geophysical and borehole data indicate <3m overburden underlain by moderately to slightly weathered bedrock (Vp = 1400-2222m/s) over slightly weathered to fresh bedrock.

Zone 2 indicates areas across the site where the geophysical and borehole data indicate 3-9m of overburden underlain by slightly weathered to fresh bedrock. The overburden thickness is a combination of Layer 1 material and Layer 2 material where Vp velocities range from 815-1400 m/s.

Some localised pockets of near-surface clayey gravel and/or sand/gravel have also been interpreted from the geophysical data in the southwest of the site (Map A:6).

A3. CONCLUSIONS & RECOMMENDATIONS

- The three subsurface layers have been interpreted from the combined data.
- Layer 1 has been interpreted as comprising diggable soft to firm sandy gravelly clay or loose to medium dense clayey sandy gravel with an average thickness of 1.7m across the site.
- Layer 2 has been subdivided based on variations in velocities:

Low Vp velocities (<1400m/s) have been interpreted as indicating diggable firm to stiff sandy gravelly clay or medium dense to dense clayey sand/gravel. The velocities for this material may also indicate rippable to marginally rippable highly to moderately weathered rock and the descriptive borehole logs would need to be reviewed to confirm the composition of this material.

Higher Vp velocities (>1400m/s) have been interpreted as indicating moderately to slightly weathered rock. The descriptive borehole logs would need to be reviewed to confirm the composition of this material. This layer should be marginally rippable where Vp seismic velocities fall below 1800 m/s and will require breaking/blasting where Vp velocities are >1800 m/s.

- Layer 3 has been interpreted as slightly weathered to fresh bedrock subdivided into low resistivity (50-385 Ohm-m) mudstone/siltstone and higher resistivities (385-2000 Ohm-m) sandstone bedrock. The Vp velocities recorded for this layer indicate that any excavation will require breaking/blasting. In addition, excavatability will vary with marginally easier excavation expected over the mudstone/siltstone while the stronger sandstone is likely to require heavy breaking.
- The site has been subdivided into two main zones:

Zone 1 has been interpreted as having <3m overburden underlain by a layer of moderately to slightly weathered bedrock over slightly weathered to fresh bedrock.

Zone 2 has been interpreted as having 3-9m_overburden over slightly weathered to fresh bedrock.

- Some localised pockets of near-surface clayey gravel and/or sand/gravel have also been interpreted from the geophysical data in the southwest of the site.
- Where bedrock excavation is proposed a detailed assessment of excavatability should be carried out combining the results of the geophysical survey, rotary core drilling, strength testing, and trial excavation pits using a high powered excavator.
- A table presented in Appendix A:V illustrates the excavability of the bedrock, which considers the seismic compressional wave results.

A4. REFERENCES

Bell F.G., 1993; 'Engineering Geology', Blackwell Scientific Press.

Campus Geophysical Instruments, 2000; 'RES2DINV ver. 3.4 Users Manual', Birmingham, England.

Davies & Schulteiss, 1980; 'Seismic signal processing in Engineering Site Investigation – a case history', Ground Engineering, May 1980.

Golden Software, 1994; 'SURFER 7 Surface Mapping System Users Manual', Golden Software, CO., USA.

Hagedoorn, J.G., 1959; 'The plus - minus method of interpreting seismic refraction sections', Geophysical Prospecting, 7, 158 - 182.

Heerden, van H. 1987. 'Relation between Static and Dynamic moduli of rocks', Int. Journal of Rock Mech. Min. Sci. and Geomech Abs Vol. 24, No. 6 pp 381-385, Pergamon.

FirstPix, version 4.14 (1993)

GREMIX, version 2.54 (1993)

Geology of the Shannon Estuary, Sheet 17, GSI

KGS, 2000, Surfseis Users Manual, Kansas Geological Survey

Palmer, D., 1980; 'The Generalized Reciprocal Method of seismic refraction interpretation', SEG.

Park, C.B., Miller, R.D., and Xia, J., 1998; Ground roll as a tool to image near-surface anomaly:SEG Expanded Extracts, 68th Annual Meeting, New Orleans, Louisiana, 874-877.

Park, C.B., Miller, R.D., and Xia, J., 1999; Multi-channel analysis of surface waves (MASW): Geophysics, May-June issue.

Redpath, B.B., 1973; 'Seismic refraction exploration for engineering site investigations', NTIS, U.S. Dept. of Commerce

Sheriff, R.E., and Geldart, L.P., 1982; Exploration seismology, volume 1: Cambridge University Press, 253 pp.

Soske, J.L., 1959; 'The blind zone problem in engineering geophysics', Geophysics, 24, pp 359-365. MAPS

INTERPRETED SECTIONS Interpreted 2D Resistivity & Seismic Profiles

APPENDIX A:I GEOPHYSICAL METHODOLOGY

APPENDIX A:I GEOPHYSICAL METHODLOGY

M1.	Methods Used
1.1	EM31 Conductivity Mapping
1.2	2D-Resistivity Profiling
1.3	Seismic Refraction Profiling
M2.	Equipment Used
2.1	EM31 Conductivity Mapping
2.2	2D-Resistivity Profiling
2.3	Seismic Refraction Profiling
МЗ.	Field Procedure
3.1	EM31 Conductivity Mapping
3.2	2D-Resistivity Profiling
3.3	Seismic Refraction Profiling
M4.	Data Processing
4.1	EM31 Conductivity Mapping
4.2	2D-Resistivity Profiling
4.3	Seismic Refraction Profiling

Appendix A:I(1)

M1. Methods Used

1.1 EM31 Conductivity Mapping

This method operates on the principle of inducing currents in conductive substrata and measuring the resultant secondary electro-magnetic field. The strength of this secondary EM field is calibrated to give apparent ground conductivity in milliSiemens/metre (mS/m). As the effective penetration of this method is around 6m below ground level the measured conductivity is a function of the different overburden layers and/or rock from 0 to 6m below ground level.

1.2 2D-Resistivity Profiling

The resistivity surveying technique used for the survey makes use of the Wenner resistivity array whereby four electrodes are placed in a line in the ground and a current is passed through the two outer electrodes. The potential difference is measured across the two inner electrodes. The measured potential is divided by the current value to obtain the resistance. The resistivity is determined from the resistance using the following formula:

Resistivity = Resistance* 2 * Pi * Spacing.

The 2D-resistivity profiling method records a large number of resistivity readings in order to map lateral and vertical changes in material types. The 2D-resistivity profiling method involves the use of 32 to 64 electrodes connected to a resistivity meter, using computer software to control the process of data collection and storage.

1.3 Seismic Refraction Profiling

This method measures the velocity of refracted seismic waves through the overburden and rock material and allows an assessment of the thickness and quality of the materials present to be made. Stiffer and stronger materials usually have higher seismic velocities while soft, loose or fractured materials have lower velocities. Readings are taken using geophones connected via multi-core cable to a seismograph.

In the MASW method Surface waves (Rayleigh waves) are utilized to determine the elastic properties of the shallow subsurface (<15m). Surface waves carry up to two/thirds of the seismic energy but are usually considered as noise in conventional body wave reflection and refraction seismic surveys.

The penetration depth of surface waves changes with wavelength, i.e. longer wavelengths penetrate deeper. When the elastic properties of near surface materials vary with depth, surface waves then become dispersive, i.e. propagation velocity changes with frequency. The propagation (or phase) velocity, is determined by the average elastic property of the medium within the penetration depth. Therefore the dispersive nature of surface waves may be used to investigate changes in elastic properties of the shallow subsurface.

The Multi-channel Analysis of Surface Waves (MASW) was used for this survey (Park et al., 1998, 1999). This method employs the multi-channel recording and processing techniques (Sheriff and Geldart, 1982) that have similarities to those used in a seismic reflection survey and which allow better waveform analysis and noise elimination. To produce a stiffness profile of the subsurface using Surface waves the following basic procedure is followed:

(i) A point source (eg. a sledgehammer) is used to generate vertical ground motions,

- (ii) the ground motions are measured using low frequency geophones, which are disposed along a straight line directed toward the source,
- (iii) the ground motions are recorded using either a conventional seismograph, oscilloscope or spectrum analyzer,
- (iv) a dispersion curve is produced from a spectral analysis of the data showing the variation of Surface wave velocity with wavelength,
- (v) the dispersion curve in inverted using a modeling and least squares minimization process to produce a subsurface profile of the variation of Surface wave and shear wave velocity with depth.

M2. Equipment Used

2.1 EM31 Conductivity Mapping

The equipment used was an EM31 Conductivity meter equipped with data logger. This instrument features a real time graphic display of the previous 20 measurement points to monitor data quality and results. 6499 conductivity readings were recorded on the 14th and 15th December 2006.

2.2 2D-Resistivity Profiling

Eight profiles were recorded from the 8th to 15th December 2006 using a Tigre resistivity meter, imaging software, two 32 takeout multicore cables and 64 stainless steel electrodes. The recorded data was processed and viewed immediately after the survey.

2.3 Seismic Refraction Profiling

Twenty three spreads were recorded from the 19th to the 22nd December 2006 using a Ras-24 high resolution 24 channel digital seismograph with 24 no. 10HZ vertical geophones using 5m geophone spacings. The record length was 600 ms. The energy source of the seismic waves was a sledgehammer. The equipment was carried in 4WD vehicle with 2 person crew.

M3. Field Procedure

3.1 EM31 Conductivity Mapping

Conductivity and in-phase values were recorded on a 5m x 10m grid over an approximate area of 17 hectares. Local conditions and variations were recorded.

3.2 2D-Resistivity Profiling

Electrode spacings of 5m investigating to a maximum depth of 29m below ground level were used. Resistances were measured for expanding arrays. 2 cycles were recorded to 3% repeatability. Saline solution was added around electrodes in areas of high contact resistance. Local conditions and variations were recorded. QC inversion of each profile was carried out before removal of electrodes.

3.3 Seismic Refraction Profiling

The seismic spreads consisted of 12 or 24 collinear geophones at spacings of 5m. The depth of investigation was of the order of 30m below ground level. Records from up to seven different positions were taken on each spread (2 x off-end, 2 x end, 3 x middle) to ensure optimum coverage of all refractors. Ongoing estimation of refractor velocities was carried out to monitor refractor type and depth.

M4. Data Processing

4.1 EM31 Conductivity Mapping

The data were downloaded and plotted. Assignation of material types and possible anomaly sources was carried out, with cross-reference to other data. A contoured map of recorded conductivity values was prepared (Map A:2).

4.2 2D-Resistivity Profiling

The field readings were stored in computer files and inverted using the RES2DINV package (Campus Geophysical Instruments, 1997) with up to 5 iterations of the measured data carried out for each profile to obtain a 2D-Depth model of the resistivities.

The inverted 2D-Resistivity models and corresponding interpreted geology are displayed on Sections A to H. The chainage is indicated along the horizontal axis of the profile and the depth below ground level is indicated on the vertical axis. All profiles have been contoured using the same contour intervals and colour codes.

It is important to note that the data displayed on the 2D-Resistivity profiles is real physical data however interpretation of the geophysical results is required to transform the resistivities directly into geological layers.

4.3 Seismic Refraction Profiling

For the P-wave interpretation, first break picking in digital format was carried out using the FIRSTPIX software program to construct traveltime plots for each spread. Velocity phases were selected from these plots using the GREMIX software program and were used to calculate the thickness of individual velocity units. Topographic data were input. Material types were assigned and estimation made of material properties, cross-referenced to the 2D Resistivity and borehole data. The processed seismic data are displayed in Appendix A:II and the Layer 1 and Layer 1+2 thicknesses are plotted on Maps A:5 and A:6.

Approximate errors for velocities are estimated to be +/- 10%. Errors for the calculated layer thicknesses are of the order of +/-20%. Possible errors due to the "hidden layer" and "velocity inversion" effects may also occur (Soske, 1959).

For the S-wave interpretation, processing was carried out using the SURFSEIS processing package developed by Kansas Geological Survey (KGS, 2000). SURFSEIS is designed to generate a shear wave velocity profile. SURFSEIS data processing involves three steps:

(i) Preparation of the acquired multichannel record. This involves converting the data file into the processing format.

(ii) Production of a dispersion curve from a spectral analysis of the data showing the variation of Raleigh wave phase velocity with wavelength. Confidence in the dispersion curve can be estimated through a measure of signal to noise ratio (S/N) which is obtained from a coherency analysis. Noise includes both body waves and higher mode surface waves. To obtain an accurate dispersion curve the spectral content and phase velocity characteristics are examined through an overtone analysis of the data.

Geophysical Survey

(iii) Inversion of the dispersion curve is then carried out to produce a subsurface profile of the variation of shear wave velocity with depth.

The shear wave velocities were then converted into shear modulus values using the formula:

(1)			$G = V_s^{2*} \rho / 1000000$
Where	G V _s	= =	Shear Modulus (GPa) Shear Wave Velocity (m/s)
	ρ	=	Density (kg/m ³)

Processing parameters were optimized by test processing using varying options in the processing package and also by reference to optimal parameters referred to in the literature.

The first arrivals on each MASW record were also picked using the FIRSTPIX and GREMIX, 1993 packages in order to produce a conventional layered P-wave depth section and P-wave velocities. These velocities were combined with the shear wave velocity data to calculate Poissons ratio, dynamic Bulk modulus and Youngs Modulus for each of the layers outlined by the P-wave data analysis using the theory of Elasticity formulae in Davies & Schulteiss, 1980 as follows:

(2)			nu=(Vp/Vs) ² -2 / 2((Vp/Vs) ² -2)
(3)			$E = 2V_s^2 \rho(1 + nu)/1000$
where	Ε V _s nu	= = =	Youngs Modulus (GPa) Shear Wave Velocity (m/s) Density (kg/m ³) Poisson's ratio
and			
(4)			B = E/3(1-2 nu)
where	B E nu	= = =	Bulk Modulus (GPa) Youngs Modulus (GPa) Poisson's ratio

For the purpose of the calculation in this report a soil density of 2180 kg/m³ and a rock density of 2700kg/m³ (derived/calculated from lab data) have been used as directed by the Arup.

APPENDIX A:II P-WAVE SEISMIC REFRACTION DATA

	_		_		_	_		_		surface	_	
line	easting	northing	station	v1	v2	v3	t1	t2	t1+t2	topo	base 1	base 2
				m/s	m/s	m/s	m	m	m	mOD	mOD	mOD
1	102066.5	148313.7	0	370	1333	3880	1.9	3.6	5.5	10.8	8.9	5.3
1	102070.8	148316.2	5	370	1333	3812	1.9	4.0	5.9	11.2	9.3	5.4
1	102075.1	148318.7	10	370	1333	3743	1.9	4.3	6.2	11.6	9.7	5.4
1	102079.5	148321.2	15	370	1333	3743	1.9	4.6	6.5	12.0	10.1	5.5
1	102083.8	148323.8	20	370	1333	3743	1.9	4.9	6.7	12.4	10.5	5.7
1	102088.1	148326.3	25	370	1333	3743	1.9	4.1	5.9	12.8	10.9	6.9
1	102092.4	148328.8	30	354	1283	3743	1.9	3.0	4.9	13.1	11.2	8.2
1	102096.7	148331.3	35	338	1233	3841	1.9	3.1	5.0	13.3	11.4	8.3
1	102101.1	148333.8	40	322	1183	3841	1.9	2.6	4.5	13.5	11.6	9.0
1	102105.4	148336.4	45	306	1133	3841	1.9	3.6	5.4	13.8	11.9	8.4
1	102109.7	148338.9	50	290	1083	3915	1.9	2.4	4.3	14.0	12.1	9.7
1	102114.0	148341.4	55	290	1083	3915	1.9	4.2	6.1	14.2	12.3	8.1
1	102118.3	148343.9	60	311	1111	3915	1.9	4.3	6.2	14.7	12.8	8.5
1	102122.7	148346.4	65	332	1139	3927	1.9	4.7	6.6	15.1	13.2	8.5
1	102127.0	148349.0	70	352	1167	3927	1.9	5.3	7.2	15.5	13.6	8.3
1	102131.3	148351.5	75	373	1194	3935	1.9	5.8	7.6	15.9	14.0	8.3
1	102135.6	148354.0	80	394	1222	3935	1.8	4.5	6.3	16.3	14.5	10.0
1	102139.9	148356.5	85	394	1222	3935	1.8	4.7	6.5	16.7	14.9	10.2
1	102144.3	148359.0	90	393	1244	3935	1.8	5.0	6.8	17.0	15.2	10.2
1	102148.6	148361.5	95	393	1267	3935	1.8	4.6	6.4	17.3	15.5	10.9
1	102152.9	148364.0	100	393	1289	3989	1.8	4.4	6.2	17.7	15.9	11.5
1	102157.2	148366.6	105	392	1311	3770	1.8	5.9	7.7	18.0	16.2	10.3
1	102161.5	148369.1	110	392	1333	3770	1.9	8.1	10.0	18.3	16.5	8.3
1	102165.9	148371.6	115	392	1333	3770	1.9	7.1	8.9	18.6	16.8	9.7
2	102165.0	148371.2	0	444	966	3395	1.6	7.3	8.9	18.6	17.0	9.7
2	102169.2	148373.9	5	429	940	3395	1.6	8.1	9.7	18.7	17.1	9.0
2	102173.5	148376.5	10	413	914	3395	1.6	7.1	8.6	18.7	17.2	10.1
2	102177.7	148379.2	15	397	887	3759	1.5	6.7	8.3	18.8	17.3	10.6
2	102181.9	148381.9	20	381	861	3847	1.5	6.9	8.4	18.9	17.4	10.5
2	102186.2	148384.5	25	381	861	3847	1.5	6.8	8.3	19.0	17.5	10.7
2	102190.4	148387.2	30	401	852	3847	1.5	6.2	7.6	19.1	17.6	11.5
2	102194.6	148389.9	35	420	843	3847	1.4	5.9	7.3	19.2	17.8	11.9
2	102198.8	148392.5	40	440	833	3883	1.4	6.1	7.5	19.3	17.9	11.8
2	102203.1	148395.2	45	459	824	4008	1.4	6.2	7.5	19.3	18.0	11.8
2	102207.3	148397.9	50	479	815	4008	1.3	4.8	6.1	19.4	18.1	13.3
2	102211.5	148400.5	55	479	815	4008	1.3	5.0	6.3	19.5	18.2	13.2
2	102215.8	148403.2	60	516	883	4008	1.3	5.8	7.1	19.6	18.3	12.5
2	102220.0	148405.8	65	554	951	3909	1.3	6.9	8.2	19.7	18.4	11.5
2	102224.2	148408.5	70	591	1020	3909	1.3	7.4	8.7	19.8	18.5	11.1
2	102228.5	148411.2	75	629	1088	3966	1.3	7.7	9.0	20.0	18.7	11.0
2	102232.7	148413.8	80	667	1156	3966	1.2	7.6	8.8	20.1	18.9	11.3
2	102236.9	148416.5	85	667	1156	3966	1.2	7.3	8.5	20.2	19.0	11.7
2	102241.1	148419.2	90	617	1221	3966	1.5	7.5	9.0	20.3	18.8	11.3
2	102245.4	148421.8	95	567	1286	3966	1.6	7.4	9.0	20.4	18.8	11.4

										surface		
line	easting	northing	station	v1	v2	v3	t1	t2	t1+t2	topo	base 1	base 2
				m/s	m/s	m/s	m	m	m	mOD	mOD	mOD
2	102249.6	148424.5	100	517	1351	3966	1.8	7.1	8.9	20.5	18.7	11.6
2	102253.8	148427.2	105	467	1416	3842	1.8	7.5	9.4	20.6	18.8	11.2
2	102258.1	148429.8	110	417	1481	3842	1.9	7.1	9.0	20.7	18.9	11.7
2	102262.3	148432.5	115	417	1481	3842	1.9	6.5	8.4	20.8	19.0	12.5
3	102261.5	148431.9	0	476	952	4248	1.4	5.1	6.5	20.8	19.4	14.3
3	102265.7	148434.6	5	452	958	4248	1.5	5.3	6.8	21.1	19.6	14.3
3	102269.9	148437.3	10	429	964	4248	1.6	5.2	6.8	21.3	19.7	14.5
3	102274.2	148439.9	15	405	970	4419	1.6	5.3	6.9	21.5	19.9	14.6
3	102278.4	148442.6	20	381	976	4419	1.6	5.5	7.1	21.7	20.1	14.6
3	102282.6	148445.3	25	381	976	4419	1.6	5.7	7.3	22.0	20.4	14.7
3	102286.8	148448.0	30	386	959	4419	1.6	6.1	7.7	22.2	20.6	14.5
3	102291.1	148450.7	35	391	941	4343	1.6	6.0	7.6	22.4	20.8	14.8
3	102295.3	148453.3	40	395	924	4343	1.6	5.4	7.0	22.7	21.1	15.7
3	102299.5	148456.0	45	400	906	4415	1.5	6.3	7.8	22.9	21.4	15.1
3	102303.7	148458.7	50	404	889	4415	1.5	6.2	7.7	23.1	21.6	15.4
3	102307.9	148461.4	55	404	889	4415	1.5	6.8	8.3	23.3	21.8	15.0
3	102312.2	148464.0	60	402	933	4415	1.6	7.3	8.8	23.3	21.8	14.5
3	102316.4	148466.7	65	400	978	4327	1.6	7.0	8.6	23.3	21.7	14.7
3	102320.6	148469.4	70	397	1022	4327	1.7	6.4	8.0	23.3	21.7	15.3
3	102324.8	148472.1	75	395	1067	4362	1.7	7.0	8.7	23.3	21.6	14.6
3	102329.1	148474.7	80	392	1111	4362	1.8	6.9	8.6	23.4	21.6	14.8
3	102333.3	148477.4	85	392	1111	4362	1.8	7.5	9.2	23.4	21.6	14.2
3	102337.5	148480.1	90	403	1156	4362	1.8	7.0	8.9	23.4	21.6	14.6
3	102341.7	148482.8	95	413	1200	4362	1.9	6.7	8.6	23.4	21.5	14.8
3	102346.0	148485.5	100	424	1244	4269	2.0	7.3	9.2	23.4	21.4	14.2
3	102350.2	148488.1	105	434	1289	4269	2.1	8.8	10.9	23.4	21.4	12.5
3	102354.4	148490.8	110	444	1333	4335	2.1	7.4	9.6	23.4	21.3	13.8
3	102358.6	148493.5	115	444	1333	4400	2.1	7.0	9.1	23.4	21.3	14.3
4	102357.5	148492.8	0	444	1111	4997	1.3	6.7	8.0	23.4	22.1	15.4
4	102361.9	148495.1	5	453	1139	4558	1.4	6.7	8.0	23.5	22.1	15.5
4	102366.4	148497.4	10	462	1167	4389	1.5	5.9	7.4	23.6	22.1	16.2
4	102370.8	148499.7	15	470	1194	4389	1.6	6.4	8.0	23.7	22.1	15.7
4	102375.3	148501.9	20	479	1222	4389	1.7	5.7	7.3	23.8	22.1	16.5
4	102379.7	148504.2	25	479	1222	4389	1.7	5.4	7.0	23.8	22.1	16.8
4	102384.2	148506.5	30	466	1182	4389	1.7	5.1	6.7	23.9	22.2	17.2
4	102388.6	148508.8	35	454	1142	4389	1.7	5.7	7.3	24.0	22.4	16.7
4	102393.1	148511.1	40	441	1103	4472	1.6	5.3	7.0	24.1	22.5	17.2
4	102397.5	148513.4	45	429	1063	4697	1.6	5.3	7.0	24.2	22.6	17.2
4	102402.0	148515.7	50	417	1023	4697	1.6	5.3	6.9	24.3	22.7	17.4
4	102406.4	148518.0	55	417	1023	4697	1.6	5.4	7.0	24.4	22.8	17.4
4	102410.9	148520.2	60	417	1026	4697	1.6	5.2	6.8	24.5	22.9	17.7
4	102415.3	148522.5	65	417	1030	4744	1.6	4.8	6.3	24.6	23.0	18.3
4	102419.7	148524.8	70	417	1033	4911	1.6	4.1	5.7	24.7	23.1	19.1
4	102424.2	148527.1	75	417	1037	4911	1.5	4.6	6.1	24.7	23.2	18.6

										surface		
line	easting	northing	station	v1	v2	v3	t1	t2	t1+t2	topo	base 1	base 2
				m/s	m/s	m/s	m	m	m	mOD	mOD	mOD
4	102428.6	148529.4	80	417	1037	4911	1.5	4.7	6.2	24.8	23.3	18.6
4	102433.1	148531.7	85	413	1111	4911	1.6	5.0	6.6	24.9	23.3	18.3
4	102437.5	148534.0	90	409	1185	4840	1.7	5.0	6.7	25.0	23.3	18.3
4	102442.0	148536.2	95	404	1259	4769	1.8	4.9	6.7	25.1	23.3	18.4
4	102446.4	148538.5	100	400	1333	4698	1.8	4.8	6.6	25.2	23.4	18.6
4	102450.9	148540.8	105	396	1407	4627	1.9	4.8	6.7	25.3	23.4	18.6
4	102455.3	148543.1	110	392	1481	4627	2.0	3.9	5.8	25.4	23.4	19.6
4	102459.8	148545.4	115	392	1481	4627	2.0	4.4	6.4	25.5	23.5	19.1
5	102407.7	148638.3	0	370	1111	3393	1.8	3.7	5.4	17.7	15.9	12.3
5	102403.2	148636.2	5	385	1119	3393	1.8	4.1	5.8	17.7	15.9	11.9
5	102398.6	148634.1	10	400	1127	3523	1.7	4.9	6.6	17.8	16.1	11.2
5	102394.1	148632.0	15	416	1135	3680	1.7	5.1	6.9	17.8	16.1	11.0
5	102389.6	148629.8	20	431	1143	3680	1.7	5.8	7.4	17.9	16.2	10.5
5	102385.0	148627.7	25	431	1143	3680	1.7	5.8	7.5	17.9	16.2	10.4
5	102380.5	148625.6	30	443	1159	3680	1.7	6.2	7.9	18.0	16.3	10.1
5	102376.0	148623.5	35	456	1175	3591	1.7	6.1	7.8	18.0	16.3	10.2
5	102371.5	148621.4	40	469	1190	3591	1.7	5.5	7.1	18.0	16.3	10.9
5	102366.9	148619.3	45	482	1206	3591	1.6	5.3	6.9	18.1	16.5	11.2
5	102362.4	148617.2	50	495	1222	3842	1.6	6.5	8.1	18.1	16.5	10.0
5	102357.9	148615.0	55	495	1222	3842	1.6	5.1	6.7	18.2	16.6	11.5
5	102353.3	148612.9	60	495	1335	3842	1.7	4.6	6.3	18.4	16.7	12.1
5	102348.8	148610.8	65	495	1448	3835	1.7	4.8	6.5	18.6	16.9	12.1
5	102344.3	148608.7	70	495	1560	3835	1.8	6.3	8.1	18.8	17.0	10.7
5	102339.7	148606.6	75	495	1673	3981	1.8	6.9	8.7	19.0	17.2	10.3
5	102335.2	148604.5	80	495	1786	3981	1.9	7.1	8.9	19.2	17.3	10.3
5	102330.7	148602.4	85	495	1786	3981	1.9	7.3	9.1	19.4	17.5	10.3
5	102326.1	148600.3	90	484	1873	3981	1.9	7.3	9.2	19.6	17.7	10.4
5	102321.6	148598.1	95	474	1960	3981	2.0	5.5	7.5	19.9	17.9	12.4
5	102317.1	148596.0	100	464	2048	3767	2.0	7.5	9.5	20.1	18.1	10.6
5	102312.5	148593.9	105	454	2135	3767	2.1	7.7	9.7	20.3	18.2	10.6
5	102308.0	148591.8	110	444	2222	3767	2.1	6.0	8.1	20.5	18.4	12.4
5	102303.5	148589.7	115	444	2222	3767	2.1	6.0	8.1	20.7	18.6	12.6
6	102304.5	148590.2	0	417	1995	3714	1.7	5.3	7.0	20.7	19.0	13.7
6	102300.0	148588.1	5	438	1995	3591	1.8	7.2	9.0	20.7	18.9	11.8
6	102295.5	148585.9	10	458	1995	3591	1.8	5.3	7.1	20.8	19.0	13.7
6	102291.0	148583.8	15	479	1994	3591	1.9	6.5	8.4	20.8	18.9	12.4
6	102286.4	148581.6	20	500	1994	3591	2.0	8.0	9.9	20.9	19.0	11.0
6	102281.9	148579.5	25	500	1994	3591	2.0	8.9	10.8	20.9	19.0	10.1
6	102277.4	148577.3	30	541	1951	3591	1.9	9.8	11.7	21.0	19.1	9.3
6	102272.9	148575.2	35	581	1908	3591	1.9	12.2	14.1	21.0	19.1	7.0
6	102268.4	148573.0	40	622	1866	3695	1.8	9.2	11.0	21.0	19.2	10.0
6	102263.9	148570.9	45	663	1823	3695	1.7	7.3	9.0	21.1	19.4	12.1
6	102259.4	148568.7	50	704	1780	3695	1.6	7.7	9.3	20.8	19.2	11.5
6	102254.8	148566.6	55	704	1780	3695	1.6	7.2	8.8	20.5	18.9	11.7

										surface		
line	easting	northing	station	v1	v2	v3	t1	t2	t1+t2	topo	base 1	base 2
				m/s	m/s	m/s	m	m	m	mOD	mOD	mOD
6	102250.3	148564.4	60	679	1697	3695	1.6	5.9	7.5	20.1	18.5	12.6
6	102245.8	148562.3	65	655	1613	3695	1.6	5.6	7.2	19.8	18.2	12.6
6	102241.3	148560.1	70	630	1530	3702	1.6	4.9	6.5	19.4	17.8	12.9
6	102236.8	148558.0	75	605	1447	3702	1.5	4.3	5.8	19.1	17.6	13.3
6	102232.3	148555.8	80	581	1363	3797	1.5	5.8	7.3	18.7	17.2	11.4
6	102227.7	148553.7	85	581	1363	3797	1.5	4.7	6.2	18.3	16.8	12.1
6	102223.2	148551.5	90	598	1333	3797	1.5	4.2	5.7	17.8	16.3	12.1
6	102218.7	148549.4	95	615	1303	4019	1.5	3.6	5.1	17.4	15.9	12.3
6	102214.2	148547.2	100	632	1273	4019	1.5	4.9	6.4	17.0	15.5	10.6
6	102209.7	148545.1	105	649	1242	3926	1.4	4.3	5.7	16.5	15.1	10.8
6	102205.2	148543.0	110	667	1212	3833	1.4	5.4	6.8	16.1	14.7	9.3
6	102200.6	148540.8	115	667	1333	3740	1.4	4.8	6.2	15.7	14.4	9.5
7	102201.6	148541.2	0	500	1500	3792	1.9	3.8	5.6	15.6	13.7	10.0
7	102197.3	148538.6	5	468	1542	3792	1.9	3.8	5.8	15.5	13.6	9.7
7	102193.1	148536.0	10	435	1583	3816	2.0	2.9	4.9	15.3	13.3	10.4
7	102188.8	148533.4	15	403	1625	3816	2.0	2.9	4.9	15.1	13.1	10.2
7	102184.5	148530.8	20	370	1667	3883	2.0	2.5	4.5	15.0	13.0	10.6
7	102180.3	148528.1	25	370	1667	3883	2.0	3.6	5.6	14.8	12.8	9.2
7	102176.0	148525.5	30	375	1578	3883	2.0	3.9	5.9	14.7	12.8	8.9
7	102171.7	148522.9	35	379	1489	3783	1.9	4.4	6.3	14.5	12.6	8.2
7	102167.5	148520.3	40	383	1400	3783	1.9	3.1	4.9	14.4	12.5	9.5
7	102163.2	148517.7	45	388	1311	3783	1.8	3.1	4.9	14.2	12.4	9.3
7	102159.0	148515.1	50	392	1222	3791	1.8	3.2	5.0	14.0	12.2	9.0
7	102154.7	148512.5	55	392	1222	3770	1.8	3.7	5.5	13.9	12.1	8.4
7	102150.4	148509.9	60	390	1222	3770	1.8	4.4	6.2	13.8	12.0	7.6
7	102146.2	148507.3	65	388	1222	3687	1.8	3.7	5.5	13.6	11.8	8.1
7	102141.9	148504.6	70	386	1222	3687	1.8	3.2	5.0	13.5	11.7	8.5
7	102137.6	148502.0	75	383	1222	3687	1.8	3.5	5.3	13.3	11.5	8.0
7	102133.4	148499.4	80	381	1222	3782	1.8	3.6	5.4	13.2	11.4	7.8
7	102129.1	148496.8	85	381	1222	3782	1.8	3.5	5.3	13.1	11.3	7.8
7	102124.9	148494.2	90	416	1200	3775	1.8	3.7	5.5	12.9	11.1	7.4
7	102120.6	148491.6	95	451	1178	3738	1.8	3.9	5.6	12.8	11.0	7.2
7	102116.3	148489.0	100	486	1156	3738	1.7	3.4	5.1	12.7	11.0	7.6
7	102112.1	148486.4	105	521	1133	3738	1.6	3.9	5.5	12.5	10.9	7.0
7	102107.8	148483.8	110	556	1111	3769	1.4	3.7	5.2	12.4	11.0	7.2
7	102103.5	148481.2	115	556	1111	3769	1.4	4.2	5.6	12.2	10.8	6.6
8	102075.8	148459.8	0	444	1100	3500	1.8	2.2	4.1	12.4	10.6	8.3
8	102071.7	148456.9	5	452	1083	3494	1.8	3.0	4.7	12.3	10.5	7.6
8	102067.6	148454.0	10	459	1066	3487	1.7	3.6	5.3	12.2	10.5	6.9
8	102063.5	148451.1	15	467	1049	3481	1.7	2.5	4.1	12.1	10.4	8.0
8	102059.5	148448.3	20	474	1032	3481	1.6	4.6	6.2	12.0	10.4	5.8
8	102055.4	148445.4	25	474	1032	3481	1.6	5.8	7.4	12.0	10.4	4.6
8	102051.3	148442.5	30	449	1033	3481	1.7	5.8	7.5	11.9	10.2	4.4
8	102047.2	148439.6	35	425	1034	3353	1.7	5.1	6.8	11.8	10.1	5.0

										surface		
line	easting	northing	station	v1	v2	v3	t1	t2	t1+t2	topo	base 1	base 2
				m/s	m/s	m/s	m	m	m	mOD	mOD	mOD
8	102043.1	148436.7	40	400	1035	3353	1.7	5.4	7.1	11.7	10.0	4.6
8	102039.0	148433.8	45	375	1036	3353	1.7	4.4	6.1	11.6	9.9	5.5
8	102034.9	148431.0	50	351	1037	3551	1.7	5.2	6.9	11.5	9.8	4.6
8	102030.9	148428.1	55	351	1037	3551	1.7	5.6	7.3	11.4	9.7	4.1
8	102026.8	148425.2	60	342	1074	3551	1.7	4.9	6.7	11.4	9.7	4.8
8	102022.7	148422.3	65	333	1111	3355	1.8	6.4	8.2	11.3	9.5	3.1
8	102018.6	148419.4	70	324	1148	3355	1.9	6.0	7.8	11.2	9.3	3.4
8	102014.5	148416.5	75	315	1185	3355	1.9	4.9	6.8	11.1	9.2	4.3
8	102010.4	148413.7	80	306	1222	3409	2.0	4.4	6.3	11.1	9.2	4.8
8	102006.4	148410.8	85	306	1222	3409	2.0	4.1	6.1	11.0	9.1	4.9
8	102002.3	148407.9	90	328	1274	3409	2.0	4.4	6.4	10.9	8.9	4.5
8	101998.2	148405.0	95	350	1326	3295	2.0	4.4	6.3	10.8	8.8	4.5
8	101994.1	148402.1	100	372	1378	3295	1.9	4.2	6.1	10.8	8.9	4.7
8	101990.0	148399.2	105	394	1430	3118	1.9	3.3	5.2	10.7	8.8	5.5
8	101985.9	148396.4	110	417	1481	3118	1.9	4.1	5.9	10.6	8.8	4.7
8	101981.8	148393.5	115	417	1481	3118	1.9	3.2	5.1	10.5	8.7	5.4
9	101953.1	148498.0	0	417	1667	3050	1.9	3.7	5.7	8.8	6.9	3.1
9	101957.7	148499.9	5	383	1587	3058	2.0	1.9	3.9	8.7	6.7	4.8
9	101962.4	148501.8	10	350	1507	3058	2.0	0.8	2.8	8.7	6.7	5.9
9	101967.0	148503.6	15	317	1427	3162	2.0	1.0	3.0	8.7	6.7	5.7
9	101971.6	148505.5	20	284	1347	3162	2.0	1.3	3.2	8.7	6.7	5.5
9	101976.3	148507.4	25	284	1347	3162	2.0	1.9	3.9	8.7	6.7	4.8
9	101980.9	148509.3	30	334	1348	3162	2.1	3.4	5.5	8.8	6.7	3.3
9	101985.5	148511.2	35	384	1349	3162	2.1	5.8	7.8	8.8	6.8	1.0
9	101990.2	148513.1	40	434	1351	3160	2.0	6.5	8.4	8.8	6.8	0.4
9	101994.8	148514.9	45	484	1352	3160	1.8	7.2	8.9	8.3	6.5	-0.6
9	101999.4	148516.8	50	534	1353	3340	1.5	6.9	8.4	7.7	6.2	-0.7
9	102004.1	148518.7	55	534	1353	3340	1.5	5.5	7.0	7.2	5.7	0.2
9	102008.7	148520.6	60	511	1327	3340	1.6	3.5	5.1	7.3	5.7	2.2
9	102013.3	148522.5	65	487	1300	3340	1.6	2.2	3.8	7.4	5.8	3.6
9	102018.0	148524.3	70	464	1273	3340	1.7	1.8	3.5	7.5	5.8	4.1
9	102022.6	148526.2	75	440	1246	3441	1.7	2.9	4.6	7.6	5.9	3.0
9	102027.2	148528.1	80	417	1220	3317	1.7	2.8	4.5	7.7	6.0	3.2
9	102031.9	148530.0	85	417	1220	3317	1.7	1.6	3.3	7.8	6.1	4.5
9	102036.5	148531.9	90	455	1272	3317	1.7	2.1	3.9	7.9	6.2	4.0
9	102041.1	148533.7	95	492	1324	3251	1.7	4.1	5.8	8.0	6.3	2.2
9	102045.7	148535.6	100	530	1377	3251	1.7	5.1	6.8	8.1	6.4	1.3
9	102050.4	148537.5	105	568	1429	3207	1.7	5.7	7.4	8.2	6.5	0.8
9	102055.0	148539.4	110	606	1481	3207	1.7	5.1	6.8	8.3	6.6	1.5
9	102059.6	148541.3	115	606	1481	3207	1.7	4.0	5.7	8.4	6.7	2.7
10	102060.0	148541.5	0	513	1111	3505	1.5	3.5	5.0	8.4	6.9	3.4
10	102064.4	148543.8	5	500	1200	3505	1.6	4.2	5.8	8.6	7.1	2.8
10	102068.9	148546.1	10	487	1289	3407	1.6	4.0	5.6	8.8	7.2	3.2
10	102073.3	148548.4	15	473	1378	3559	1.6	4.7	6.3	9.0	7.4	2.7

										surface		
line	easting	northing	station	v1	v2	v3	t1	t2	t1+t2	topo	base 1	base 2
				m/s	m/s	m/s	m	m	m	mOD	mOD	mOD
10	102077.8	148550.7	20	460	1467	3582	1.7	5.0	6.6	9.2	7.6	2.6
10	102082.2	148552.9	25	460	1467	3582	1.7	5.1	6.7	9.4	7.8	2.7
10	102086.7	148555.2	30	480	1520	3582	1.7	4.9	6.6	9.6	7.9	3.1
10	102091.1	148557.5	35	500	1572	3760	1.7	3.6	5.3	9.8	8.1	4.5
10	102095.6	148559.8	40	520	1625	3760	1.8	3.8	5.6	10.0	8.2	4.4
10	102100.0	148562.1	45	540	1677	3754	1.8	3.0	4.8	10.2	8.4	5.4
10	102104.5	148564.4	50	559	1730	3754	1.9	4.0	5.8	10.4	8.5	4.6
10	102108.9	148566.7	55	559	1730	3754	1.9	2.7	4.6	10.6	8.7	6.0
10	102113.3	148569.0	60	598	1665	3754	1.8	2.4	4.2	10.7	8.9	6.5
10	102117.8	148571.2	65	636	1601	3754	1.8	4.4	6.1	10.8	9.0	4.7
10	102122.2	148573.5	70	674	1536	3745	1.7	5.0	6.7	11.0	9.3	4.4
10	102126.7	148575.8	75	712	1472	3806	1.6	6.1	7.7	11.1	9.5	3.4
10	102131.1	148578.1	80	750	1407	3806	1.5	5.4	6.9	11.2	9.7	4.3
10	102135.6	148580.4	85	750	1407	3806	1.5	4.3	5.8	11.4	9.9	5.6
10	102140.0	148582.7	90	742	1459	3806	1.4	3.1	4.5	11.5	10.1	7.0
10	102144.5	148585.0	95	733	1511	3631	1.4	2.7	4.1	11.6	10.2	7.5
10	102148.9	148587.3	100	725	1563	3631	1.3	1.6	2.9	11.8	10.5	8.9
10	102153.4	148589.6	105	717	1615	3631	1.3	2.1	3.4	11.9	10.7	8.5
10	102157.8	148591.8	110	708	1667	3691	1.2	3.4	4.6	12.0	10.8	7.4
10	102162.2	148594.1	115	700	1667	3691	1.2	4.4	5.6	12.2	11.0	6.6
11	102161.5	148593.7	0	556	1765	4005	1.8	4.1	5.9	12.2	10.4	6.3
11	102165.5	148596.7	5	572	1609	3984	1.7	4.4	6.0	12.4	10.8	6.4
11	102169.5	148599.7	10	589	1452	3963	1.5	4.5	6.0	12.6	11.1	6.6
11	102173.5	148602.7	15	606	1296	3963	1.4	4.3	5.7	12.8	11.4	7.1
11	102177.5	148605.8	20	606	1296	3963	1.4	5.1	6.5	13.0	11.6	6.5
11	102181.4	148608.8	25	579	1271	3963	1.5	6.4	7.9	13.2	11.7	5.3
11	102185.4	148611.8	30	552	1245	3852	1.5	6.4	7.9	13.4	11.9	5.5
11	102189.4	148614.8	35	525	1220	3852	1.6	5.2	6.8	13.6	12.0	6.8
11	102193.4	148617.8	40	498	1194	3852	1.6	6.4	8.0	13.8	12.2	5.8
11	102197.4	148620.8	45	471	1168	3852	1.6	5.9	7.5	14.0	12.4	6.5
11	102201.4	148623.9	50	444	1143	3960	1.6	5.3	6.9	14.2	12.6	7.3
11	102205.4	148626.9	55	444	1143	3960	1.6	5.0	6.6	14.4	12.8	7.8
11	102209.4	148629.9	60	466	1192	3960	1.9	4.7	6.5	14.7	12.8	8.2
11	102213.3	148632.9	65	487	1241	4010	2.1	3.2	5.3	14.9	12.8	9.6
11	102217.3	148635.9	70	508	1290	4010	2.4	3.4	5.8	15.2	12.8	9.5
11	102221.3	148638.9	75	529	1340	4010	2.6	3.7	6.3	15.4	12.8	9.1
11	102225.3	148642.0	80	550	1389	4009	2.9	2.9	5.8	15.6	12.7	9.8
11	102229.3	148645.0	85	528	1389	4009	2.8	2.9	5.7	15.9	13.1	10.2
11	102233.3	148648.0	90	506	1444	4009	2.6	3.1	5.7	16.1	13.5	10.4
11	102237.3	148651.0	95	483	1500	3934	2.4	3.3	5.7	16.4	14.0	10.7
11	102241.3	148654.0	100	461	1556	3934	2.3	3.5	5.7	16.6	14.4	10.9
11	102245.2	148657.0	105	439	1611	3934	2.1	3.8	5.9	16.9	14.8	11.0
11	102249.2	148660.1	110	417	1667	4018	1.9	3.2	5.1	17.1	15.2	12.0
11	102253.2	148663.1	115	417	1667	4018	1.9	2.7	4.6	17.3	15.4	12.7

										surface		
line	easting	northing	station	v1	v2	v3	t1	t2	t1+t2	topo	base 1	base 2
				m/s	m/s	m/s	m	m	m	mOD	mOD	mOD
12	102252.1	148662.2	0	417	1500	3687	2.0	3.1	5.0	17.3	15.4	12.3
12	102256.5	148664.7	5	441	1500	3632	1.9	1.3	3.3	17.5	15.6	14.3
12	102260.8	148667.1	10	465	1500	3632	1.9	2.0	3.9	17.6	15.7	13.7
12	102265.1	148669.6	15	489	1500	3632	1.8	3.1	4.9	17.7	15.9	12.8
12	102269.5	148672.1	20	513	1500	3763	1.7	4.6	6.3	17.8	16.1	11.5
12	102273.8	148674.5	25	513	1500	3763	1.7	4.4	6.2	18.0	16.3	11.8
12	102278.2	148677.0	30	506	1522	3763	1.8	3.2	5.0	18.1	16.3	13.1
12	102282.5	148679.5	35	499	1543	3675	1.8	3.7	5.5	18.2	16.4	12.7
12	102286.9	148681.9	40	492	1565	3675	1.8	3.0	4.8	18.3	16.5	13.5
12	102291.2	148684.4	45	485	1587	3675	1.9	5.8	7.6	17.7	15.9	10.1
12	102295.6	148686.9	50	479	1609	3819	1.9	6.1	8.0	17.1	15.2	9.1
12	102299.9	148689.3	55	479	1609	3819	1.9	6.4	8.2	16.5	14.6	8.3
12	102304.3	148691.8	60	462	1565	3819	1.9	4.1	6.0	16.0	14.1	10.0
12	102308.6	148694.3	65	445	1521	3819	1.9	4.4	6.2	15.5	13.6	9.3
12	102313.0	148696.7	70	428	1477	3819	1.9	5.1	7.0	15.0	13.1	8.0
12	102317.3	148699.2	75	411	1433	3602	1.9	6.6	8.5	14.4	12.5	6.0
12	102321.7	148701.7	80	394	1389	3602	1.9	6.1	8.0	13.9	12.0	6.0
12	102326.0	148704.1	85	394	1389	3602	1.9	6.1	8.0	13.4	11.5	5.5
12	102330.4	148706.6	90	442	1444	3602	2.2	4.5	6.7	12.9	10.7	6.2
12	102334.7	148709.1	95	571	1500	3602	3.1	4.7	7.8	12.4	9.3	4.6
12	102339.1	148711.5	100	700	1400	3602	4.5	2.1	6.6	11.8	7.4	5.2
12	102343.4	148714.0	105	700	1400	3672	4.5	3.3	7.8	11.3	6.8	3.5
12	102347.8	148716.5	110	700	1400	3672	4.7	3.9	8.5	10.8	6.1	2.3
12	102352.1	148718.9	115	700	1400	3672	4.9	3.5	8.3	10.3	5.5	2.0
13	102403.0	148748.7	0	556	1667	3704	1.8	4.4	6.2	6.0	4.2	-0.2
13	102405.4	148744.3	5	546	1583	3704	1.7	3.0	4.7	6.5	4.8	1.8
13	102407.7	148739.9	10	536	1500	3721	1.6	2.9	4.5	7.0	5.4	2.5
13	102410.0	148735.5	15	526	1417	3721	1.5	4.3	5.8	7.5	6.0	1.7
13	102412.4	148731.0	20	516	1333	3721	1.5	4.5	6.0	8.1	6.6	2.1
13	102414.7	148726.6	25	516	1333	3771	1.5	5.5	7.0	8.6	7.1	1.6
13	102417.1	148722.2	30	513	1333	3771	1.5	4.3	5.8	9.1	7.6	3.3
13	102419.4	148717.8	35	510	1333	3759	1.5	4.9	6.3	9.6	8.2	3.3
13	102421.8	148713.4	40	506	1333	3759	1.4	5.3	6.8	10.1	8.7	3.4
13	102424.1	148709.0	45	503	1333	3759	1.4	5.1	6.5	10.6	9.2	4.1
13	102426.5	148704.6	50	500	1333	3759	1.4	5.3	6.7	11.2	9.8	4.5
13	102428.8	148700.2	55	500	1333	3896	1.4	6.4	7.8	11.7	10.3	3.9
13	102431.2	148695.7	60	535	1366	3896	1.5	6.4	7.8	12.2	10.7	4.4
13	102433.5	148691.3	65	569	1400	3835	1.5	5.3	6.8	12.6	11.1	5.8
13	102435.9	148686.9	70	604	1433	3835	1.5	5.4	6.9	13.1	11.6	6.2
13	102438.2	148682.5	75	639	1466	3835	1.5	6.3	7.8	13.6	12.1	5.8
13	102440.6	148678.1	80	673	1499	3954	1.6	7.4	9.0	14.1	12.6	5.1
13	102442.9	148673.7	85	673	1499	3954	1.6	5.6	7.1	14.6	13.1	7.5
13	102445.3	148669.3	90	628	1532	3954	1.7	4.4	6.1	15.1	13.4	9.0
13	102447.6	148664.8	95	582	1566	3954	1.8	3.9	5.7	15.5	13.7	9.8

										surface		
line	easting	northing	station	v1	v2	v3	t1	t2	t1+t2	topo	base 1	base 2
				m/s	m/s	m/s	m	m	m	mOD	mOD	mOD
13	102450.0	148660.4	100	536	1600	3954	1.9	0.7	2.5	16.0	14.1	13.5
13	102452.3	148656.0	105	490	1633	3954	1.9	3.0	4.9	16.5	14.6	11.6
13	102454.7	148651.6	110	444	1667	4126	1.9	1.6	3.5	17.0	15.1	13.5
13	102457.0	148647.2	115	444	1667	4126	1.9	4.1	6.0	17.5	15.6	11.5
14	102456.0	148649.3	0	417	1666	3800	2.0	4.9	6.8	17.5	15.5	10.7
14	102458.6	148645.0	5	400	1583	3801	1.9	4.2	6.1	17.9	16.0	11.8
14	102461.1	148640.7	10	384	1500	3935	1.9	3.6	5.5	18.4	16.5	12.9
14	102463.7	148636.4	15	368	1417	4037	1.8	4.1	5.9	18.8	17.0	12.9
14	102466.2	148632.1	20	352	1333	4037	1.8	6.3	8.1	19.2	17.4	11.1
14	102468.8	148627.8	25	352	1333	4237	1.8	6.9	8.7	19.7	17.9	11.0
14	102471.3	148623.5	30	370	1311	4237	1.8	6.1	7.9	20.1	18.3	12.3
14	102473.9	148619.2	35	389	1289	4144	1.8	4.9	6.6	20.6	18.8	14.0
14	102476.4	148614.9	40	407	1267	4144	1.8	4.9	6.6	21.0	19.2	14.4
14	102479.0	148610.6	45	426	1244	4144	1.7	5.5	7.2	21.4	19.7	14.2
14	102481.5	148606.3	50	444	1222	4266	1.7	4.5	6.2	21.9	20.2	15.7
14	102484.1	148602.0	55	444	1222	4266	1.7	4.2	5.9	22.3	20.6	16.4
14	102486.6	148597.7	60	473	1377	4266	1.8	3.8	5.7	22.7	20.9	17.1
14	102489.2	148593.4	65	502	1533	4296	2.0	5.3	7.3	23.1	21.1	15.8
14	102491.7	148589.1	70	531	1688	4296	2.1	5.5	7.7	23.4	21.3	15.8
14	102494.3	148584.8	75	560	1843	4381	2.3	6.2	8.5	23.8	21.5	15.3
14	102496.8	148580.5	80	589	1999	4381	2.5	6.5	9.0	24.2	21.7	15.2
14	102499.4	148576.2	85	589	1999	4381	2.5	5.5	7.9	24.6	22.1	16.7
14	102501.9	148571.9	90	560	2043	4381	2.4	4.8	7.2	25.0	22.6	17.8
14	102504.5	148567.6	95	531	2088	4442	2.3	4.6	6.9	25.3	23.0	18.4
14	102507.0	148563.3	100	502	2133	4442	2.2	2.4	4.6	25.7	23.5	21.1
14	102509.6	148559.0	105	473	2177	4442	2.1	3.2	5.3	26.1	24.0	20.8
14	102512.1	148554.7	110	444	2222	4292	2.0	2.6	4.6	26.5	24.5	21.9
14	102514.7	148550.4	115	444	2222	4292	2.0	3.5	5.6	26.9	24.9	21.3
15	102498.1	148576.6	200	444	2000	4193	1.6	4.6	6.2	24.1	22.5	17.9
15	102500.7	148572.3	205	458	1967	4193	1.7	3.4	5.1	24.5	22.9	19.4
15	102503.3	148568.1	210	472	1933	4193	1.7	2.3	4.0	25.0	23.3	21.0
15	102506.0	148563.8	215	486	1900	4193	1.8	1.6	3.4	25.5	23.7	22.2
15	102508.6	148559.5	220	500	1867	4193	1.8	1.0	2.8	25.9	24.1	23.1
15	102511.2	148555.3	225	500	1833	4068	1.6	3.3	4.8	26.4	24.8	21.6
15	102513.8	148551.0	230	548	1800	4068	1.3	6.4	7.6	26.9	25.7	19.3
15	102516.4	148546.8	235	596	1767	3806	1.3	6.3	7.7	27.3	26.0	19.6
15	102519.0	148542.5	240	644	1733	3806	1.4	7.1	8.6	27.7	26.3	19.2
15	102521.7	148538.2	245	693	1700	3806	1.5	6.2	7.7	28.1	26.6	20.4
15	102524.3	148534.0	250	741	1667	3887	1.6	4.8	6.3	28.5	27.0	22.2
15	102526.9	148529.7	255	741	1667	3887	1.6	3.6	5.2	29.0	27.5	23.8
16	102633.4	148582.1	0	370	833	3628	1.6	3.5	5.1	30.6	29.1	25.5
16	102630.9	148586.4	5	411	878	3628	1.5	4.8	6.4	30.2	28.7	23.9
16	102628.4	148590.7	10	452	922	3727	1.5	5.1	6.6	29.9	28.4	23.3
16	102625.9	148595.1	15	493	966	3727	1.4	5.9	7.3	29.5	28.1	22.2

										surface		
line	easting	northing	station	v1	v2	v3	t1	t2	t1+t2	topo	base 1	base 2
				m/s	m/s	m/s	m	m	m	mOD	mOD	mOD
16	102623.4	148599.4	20	534	1011	3994	1.2	5.5	6.7	29.2	28.0	22.5
16	102620.9	148603.7	25	534	1011	3994	1.2	5.5	6.7	28.8	27.6	22.1
16	102618.3	148608.0	30	517	1118	3994	1.4	4.8	6.2	28.5	27.1	22.3
16	102615.8	148612.4	35	499	1225	3903	1.5	4.4	5.9	28.1	26.6	22.2
16	102613.3	148616.7	40	482	1332	3903	1.6	4.5	6.2	27.7	26.1	21.6
16	102610.8	148621.0	45	464	1439	3903	1.8	5.1	6.9	27.4	25.7	20.5
16	102608.3	148625.3	50	446	1546	3978	1.9	3.4	5.2	27.0	25.2	21.8
16	102605.8	148629.7	55	446	1546	3978	1.9	3.6	5.4	26.7	24.9	21.3
16	102603.3	148634.0	60	446	1596	3978	1.9	4.2	6.1	26.2	24.3	20.1
16	102600.8	148638.3	65	446	1645	3905	2.0	4.0	6.0	25.8	23.9	19.8
16	102598.3	148642.6	70	446	1694	3905	2.0	2.5	4.5	25.4	23.4	20.9
16	102595.7	148647.0	75	446	1743	3905	2.1	2.3	4.4	24.9	22.9	20.6
16	102593.2	148651.3	80	446	1793	3905	2.1	2.6	4.7	24.5	22.4	19.8
16	102590.7	148655.6	85	446	1793	4023	2.1	3.0	5.1	24.0	21.9	19.0
16	102588.2	148659.9	90	440	1824	4023	2.1	2.6	4.7	23.6	21.5	18.9
16	102585.7	148664.2	95	435	1854	3980	2.0	3.3	5.4	23.2	21.2	17.8
16	102583.2	148668.6	100	429	1885	3980	2.0	1.4	3.4	22.7	20.7	19.3
16	102580.7	148672.9	105	423	1916	3999	2.0	4.3	6.3	22.3	20.3	16.0
16	102578.2	148677.2	110	417	1947	4004	1.9	3.4	5.4	21.8	19.9	16.4
16	102575.7	148681.5	115	417	1667	3854	2.0	2.4	4.4	21.4	19.4	17.0
17	102576.2	148680.7	0	417	1667	3950	1.9	3.9	5.9	21.4	19.5	15.5
17	102573.3	148684.8	5	445	1667	3948	2.1	5.6	7.7	21.1	19.0	13.4
17	102570.5	148688.9	10	473	1667	4015	2.3	5.6	7.9	20.9	18.6	13.0
17	102567.6	148693.0	15	501	1667	4015	2.5	5.0	7.5	20.6	18.1	13.1
17	102564.7	148697.1	20	529	1667	4100	2.7	5.7	8.4	20.3	17.6	11.9
17	102561.9	148701.2	25	529	1667	4100	2.7	5.3	8.1	20.0	17.3	12.0
17	102559.0	148705.3	30	530	1772	4100	2.5	5.9	8.4	19.8	17.3	11.4
17	102556.1	148709.4	35	531	1878	4040	2.4	6.6	9.0	19.5	17.2	10.5
17	102553.3	148713.5	40	532	1983	4128	2.2	7.3	9.4	19.2	17.0	9.8
17	102550.4	148717.6	45	533	2089	4128	2.0	7.1	9.1	18.9	16.9	9.8
17	102547.5	148721.7	50	534	2194	4128	1.8	10.1	11.9	18.7	16.9	6.8
17	102544.7	148725.8	55	534	2194	4128	1.8	10.7	12.5	18.4	16.6	5.9
17	102541.8	148729.9	60	511	2055	4128	1.8	10.2	12.0	17.9	16.1	5.9
17	102538.9	148734.0	65	488	1916	4128	1.9	5.6	7.4	17.4	15.5	10.0
17	102536.1	148738.1	70	465	1778	4128	1.9	5.9	7.7	16.9	15.0	9.2
17	102533.2	148742.2	75	441	1639	4128	1.9	3.6	5.5	16.4	14.5	11.0
17	102530.3	148746.2	80	453	1500	4066	2.1	3.7	5.8	15.9	13.9	10.2
17	102527.5	148750.3	85	465	1500	4005	2.1	3.8	5.9	15.3	13.2	9.4
17	102524.6	148754.4	90	477	1472	3921	2.2	4.6	6.8	14.8	12.6	8.0
17	102521.7	148758.5	95	488	1444	3837	2.3	3.3	5.5	14.1	11.9	8.6
17	102518.9	148762.6	100	500	1417	3753	2.3	4.4	6.8	13.4	11.1	6.6
17	102516.0	148766.7	105	472	1389	3668	2.2	4.4	6.6	12.6	10.4	6.0
17	102513.1	148770.8	110	444	1361	3584	2.1	4.2	6.3	11.9	9.8	5.6
17	102510.3	148774.9	115	444	1333	3500	2.1	2.9	5.0	11.2	9.1	6.3

										surface		
line	easting	northing	station	v1	v2	v3	t1	t2	t1+t2	topo	base 1	base 2
				m/s	m/s	m/s	m	m	m	mOD	mOD	mOD
18	102524.3	148754.1	0	612	1333	3538	2.1	4.2	6.3	14.8	12.7	8.5
18	102521.5	148758.2	5	588	1375	3538	2.2	1.9	4.1	14.1	11.9	10.1
18	102518.7	148762.4	10	564	1417	3494	2.3	3.7	6.0	13.4	11.2	7.4
18	102515.9	148766.5	15	540	1458	3494	2.3	3.0	5.3	12.6	10.3	7.3
18	102513.1	148770.7	20	516	1500	3534	2.4	2.8	5.2	11.9	9.5	6.7
18	102510.3	148774.8	25	523	1500	3534	2.4	2.8	5.2	11.2	8.8	6.0
18	102507.5	148778.9	30	529	1533	3534	2.3	2.4	4.7	10.5	8.2	5.8
18	102504.7	148783.1	35	536	1567	3770	2.2	2.3	4.4	9.9	7.7	5.5
18	102501.9	148787.2	40	542	1600	3770	2.0	2.7	4.7	9.3	7.3	4.6
18	102499.0	148791.3	45	549	1633	3770	1.9	1.8	3.7	8.6	6.7	4.9
18	102496.2	148795.5	50	556	1667	3830	1.8	2.8	4.6	8.0	6.2	3.4
18	102493.4	148799.6	55	556	1667	3830	1.8	5.6	7.4	7.3	5.5	-0.1
19	102717.7	148631.7	0	600	1666	3808	1.9	1.9	3.8	31.2	29.3	27.4
19	102715.1	148636.0	5	603	1666	3808	1.8	2.0	3.8	31.0	29.2	27.2
19	102712.6	148640.3	10	606	1666	3808	1.7	1.4	3.1	30.7	29.0	27.6
19	102710.0	148644.6	15	608	1667	3808	1.6	5.0	6.6	30.5	28.9	24.0
19	102707.4	148648.9	20	611	1667	4035	1.5	7.6	9.0	30.2	28.7	21.2
19	102704.9	148653.2	25	611	1667	4035	1.5	6.7	8.2	30.0	28.5	21.8
19	102702.3	148657.5	30	635	1630	4253	1.4	4.8	6.1	29.7	28.3	23.6
19	102699.8	148661.7	35	660	1593	4253	1.2	5.9	7.2	29.4	28.2	22.2
19	102697.2	148666.0	40	684	1556	4253	1.1	5.9	7.0	29.2	28.1	22.2
19	102694.6	148670.3	45	708	1519	4176	0.9	8.0	9.0	28.9	28.0	20.0
19	102692.1	148674.6	50	733	1481	4176	0.7	5.9	6.6	28.7	28.0	22.1
19	102689.5	148678.9	55	733	1481	4176	0.7	8.2	8.9	28.4	27.7	19.5
19	102686.9	148683.2	60	711	1630	4145	1.0	8.8	9.8	28.6	27.6	18.8
19	102684.4	148687.5	65	690	1778	4145	1.3	6.7	8.0	28.8	27.6	20.8
19	102681.8	148691.8	70	668	1926	4145	1.5	5.8	7.3	29.0	27.5	21.7
19	102679.2	148696.1	75	647	2074	4327	1.7	4.4	6.1	28.4	26.7	22.3
19	102676.7	148700.4	80	625	2222	4327	1.9	3.2	5.1	27.9	26.0	22.8
19	102674.1	148704.7	85	625	2134	4327	1.9	3.9	5.8	27.3	25.4	21.5
19	102671.5	148709.0	90	633	2047	4327	1.8	2.2	4.1	26.8	25.0	22.8
19	102669.0	148713.3	95	642	1959	4327	1.8	3.6	5.4	26.2	24.4	20.8
19	102666.4	148717.5	100	650	1871	4342	1.7	4.9	6.6	25.7	24.0	19.1
19	102663.9	148721.8	105	658	1784	4066	1.7	4.5	6.2	25.1	23.4	18.9
19	102661.3	148726.1	110	667	1696	3967	1.7	5.2	6.8	24.5	22.9	17.7
19	102658.7	148730.4	115	667	1696	3967	1.7	3.8	5.4	24.0	22.4	18.6
20	102659.2	148729.6	0	556	1666	3609	1.5	2.6	4.1	24.0	22.5	19.9
20	102656.8	148734.0	5	613	1669	3718	1.5	3.1	4.6	23.8	22.3	19.2
20	102654.3	148738.3	10	671	1671	3718	1.5	5.0	6.5	23.6	22.1	17.1
20	102651.9	148742.7	15	729	1674	4201	1.5	4.2	5.7	23.4	21.9	17.7
20	102649.4	148747.0	20	787	1677	4201	1.5	4.4	5.9	23.2	21.7	17.3
20	102647.0	148751.4	25	787	1677	4201	1.5	4.7	6.2	23.0	21.5	16.8
20	102644.6	148755.8	30	736	1632	4201	1.6	2.3	3.9	22.8	21.2	18.9
20	102642.1	148760.1	35	686	1587	4201	1.6	0.7	2.3	22.6	21.0	20.3

										surface		
line	easting	northing	station	v1	v2	v3	t1	t2	t1+t2	topo	base 1	base 2
				m/s	m/s	m/s	m	m	m	mOD	mOD	mOD
20	102639.7	148764.5	40	635	1542	4201	1.7	0.3	1.9	22.4	20.7	20.5
20	102637.2	148768.9	45	585	1497	4151	1.7	1.9	3.6	21.7	20.0	18.2
20	102634.8	148773.2	50	534	1452	4233	1.7	0.6	2.3	21.0	19.4	18.7
20	102632.4	148777.6	55	534	1452	4233	1.7	2.4	4.0	20.2	18.6	16.2
20	102629.9	148782.0	60	571	1488	4233	1.7	3.5	5.2	19.4	17.7	14.3
20	102627.5	148786.3	65	608	1524	4194	1.7	4.4	6.1	18.6	16.9	12.5
20	102625.0	148790.7	70	645	1560	4194	1.7	4.0	5.7	17.8	16.1	12.2
20	102622.6	148795.1	75	683	1595	4194	1.7	4.6	6.3	17.0	15.3	10.8
20	102620.2	148799.4	80	720	1631	4353	1.6	4.7	6.4	16.2	14.6	9.9
20	102617.7	148803.8	85	720	1631	4353	1.6	4.4	6.0	15.4	13.8	9.4
20	102615.3	148808.1	90	687	1637	4353	1.6	3.6	5.2	14.8	13.2	9.6
20	102612.8	148812.5	95	654	1643	4244	1.6	3.3	4.9	14.2	12.6	9.3
20	102610.4	148816.9	100	621	1649	4293	1.5	2.5	4.0	13.5	12.0	9.5
20	102608.0	148821.2	105	588	1654	4293	1.5	3.7	5.2	12.9	11.4	7.7
20	102605.5	148825.6	110	556	1660	4293	1.4	4.2	5.6	12.2	10.8	6.6
20	102603.1	148830.0	115	556	1666	4451	1.5	1.4	2.9	11.6	10.1	8.7
21	102618.3	148803.4	0	513	1667	4190	1.4	2.6	4.0	15.4	14.1	11.5
21	102616.1	148807.9	5	513	1667	3762	1.4	4.2	5.6	14.9	13.6	9.3
21	102613.9	148812.4	10	513	1667	3762	1.4	2.8	4.2	14.3	13.0	10.1
21	102611.6	148816.8	15	513	1666	3762	1.4	1.9	3.2	13.8	12.5	10.6
21	102609.4	148821.3	20	513	1666	3762	1.4	4.7	6.0	13.2	11.9	7.2
21	102607.2	148825.8	25	513	1666	3934	1.4	3.6	5.0	12.7	11.4	7.7
21	102605.0	148830.3	30	531	1666	4134	1.4	2.6	4.0	12.2	10.8	8.2
21	102602.7	148834.7	35	550	1666	4134	1.5	2.9	4.4	11.6	10.1	7.2
21	102600.5	148839.2	40	569	1666	4134	1.5	0.6	2.2	11.1	9.6	9.0
21	102598.3	148843.7	45	587	1666	4134	1.6	3.6	5.1	10.5	8.9	5.4
21	102596.1	148848.2	50	606	1666	4134	1.6	2.5	4.2	10.0	8.4	5.8
21	102593.8	148852.7	55	606	1666	4162	1.6	1.6	3.2	9.4	7.8	6.2
22	102790.1	148715.1	0	741	2222	3700	1.6	7.9	9.4	27.4	25.8	18.0
22	102787.5	148719.4	5	691	1944	3672	1.5	7.8	9.2	27.0	25.5	17.8
22	102785.0	148723.7	10	641	1667	3672	1.4	5.6	7.0	26.7	25.4	19.7
22	102782.4	148728.0	15	591	1389	3997	1.3	5.6	6.8	26.3	25.1	19.5
22	102779.8	148732.3	20	541	1111	3997	1.2	4.8	5.9	26.0	24.8	20.1
22	102777.3	148736.6	25	541	1111	3997	1.2	4.8	5.9	25.6	24.4	19.7
22	102774.7	148740.8	30	560	1269	3739	1.2	5.4	6.6	25.3	24.1	18.7
22	102772.2	148745.1	35	579	1427	3836	1.2	5.8	7.1	24.9	23.7	17.8
22	102769.6	148749.4	40	598	1585	3836	1.3	6.6	7.9	24.6	23.3	16.7
22	102767.0	148753.7	45	617	1743	3919	1.3	9.0	10.3	24.2	22.9	13.9
22	102764.5	148758.0	50	636	1901	3919	1.4	9.2	10.6	23.9	22.5	13.3
22	102761.9	148762.3	55	636	1901	3919	1.4	7.7	9.1	23.5	22.1	14.4
22	102759.3	148766.6	60	642	1888	3919	1.4	7.3	8.8	23.2	21.8	14.4
22	102756.8	148770.9	65	648	1874	3919	1.5	6.0	7.5	22.8	21.3	15.3
22	102754.2	148775.2	70	655	1861	4160	1.6	5.0	6.5	22.4	20.9	15.9
22	102751.6	148779.5	75	661	1847	3868	1.6	5.9	7.5	22.1	20.5	14.6

					•	•				surface		
line	easting	northing	station	v1	v2	V3	t1	t2	t1+t2	topo	base 1	base 2
				m/s	m/s	m/s	m	m	m	mOD	mOD	mOD
22	102749.1	148783.8	80	667	1834	3868	1.7	6.5	8.1	21.7	20.0	13.6
22	102746.5	148788.1	85	667	1834	3868	1.7	7.3	8.9	21.3	19.6	12.4
22	102743.9	148792.4	90	681	1861	3868	1.7	7.4	9.1	21.0	19.3	11.9
22	102741.4	148796.7	95	696	1889	3868	1.7	8.0	9.7	20.6	18.9	10.9
22	102738.8	148800.9	100	711	1917	3868	1.7	9.0	10.8	20.2	18.5	9.4
22	102736.3	148805.2	105	726	1945	3965	1.8	7.6	9.4	19.8	18.0	10.4
22	102733.7	148809.5	110	741	1972	3938	1.8	6.0	7.8	19.5	17.7	11.7
22	102731.1	148813.8	115	741	2000	4091	1.8	6.0	7.8	19.1	17.3	11.3
23	102731.5	148813.2	0	606	1800	4200	1.6	6.0	7.6	19.1	17.5	11.5
23	102729.0	148817.5	5	597	1794	4188	1.6	6.9	8.6	18.8	17.2	10.3
23	102726.6	148821.9	10	589	1789	4177	1.7	7.8	9.5	18.4	16.7	8.9
23	102724.1	148826.2	15	580	1783	4165	1.8	8.7	10.4	18.1	16.3	7.7
23	102721.6	148830.6	20	571	1778	4165	1.8	7.6	9.4	17.8	16.0	8.4
23	102719.1	148834.9	25	571	1778	4165	1.8	7.8	9.6	17.5	15.7	7.9
23	102716.7	148839.3	30	560	1785	4189	1.8	6.0	7.8	17.1	15.3	9.3
23	102714.2	148843.6	35	548	1792	3984	1.8	5.8	7.5	16.8	15.0	9.3
23	102711.7	148848.0	40	536	1798	3984	1.8	5.7	7.5	16.5	14.7	9.0
23	102709.3	148852.3	45	525	1805	3984	1.8	4.9	6.6	16.1	14.4	9.5
23	102706.8	148856.7	50	513	1812	3984	1.7	3.9	5.7	15.8	14.1	10.2
23	102704.3	148861.0	55	513	1812	3984	1.7	4.0	5.8	15.5	13.8	9.7
23	102701.8	148865.4	60	544	1782	3888	1.7	5.3	7.0	15.1	13.4	8.1
23	102699.4	148869.7	65	574	1752	3888	1.7	3.6	5.3	14.8	13.1	9.5
23	102696.9	148874.1	70	605	1723	3888	1.7	4.1	5.8	14.5	12.8	8.7
23	102694.4	148878.4	75	636	1693	3888	1.7	5.1	6.8	14.1	12.4	7.3
23	102692.0	148882.7	80	667	1663	4154	1.6	5.8	7.4	13.4	11.8	6.0
23	102689.5	148887.1	85	667	1663	4154	1.6	6.5	8.2	12.7	11.1	4.5
23	102687.0	148891.4	90	644	1663	4154	1.7	6.2	7.9	12.0	10.3	4.1
23	102684.5	148895.8	95	622	1664	4022	1.7	5.0	6.7	11.2	9.5	4.6
23	102682.1	148900.1	100	600	1664	4022	1.7	2.7	4.4	10.3	8.6	5.9
23	102679.6	148904.5	105	578	1665	4022	1.7	2.5	4.2	9.3	7.6	5.1
23	102677.1	148908.8	110	556	1665	4022	1.7	3.3	5.0	8.4	6.7	3.4
23	102674.7	148913.2	115	556	1666	4190	1.8	3.8	5.6	7.4	5.6	1.8
			Minimum	284	815	3050	0.7	0.3	1.9	6.0	4.2	-0.7
			Maximum	787	2222	4997	4.9	12.2	14.1	31.2	29.3	27.6
			Average	508	1467	3905	1.8	4.8	6.6	17.8	16.0	11.2

APPENDIX A:III S-WAVE SEISMIC REFRACTION DATA WAS DETERMINED BY THE MASW METHOD.

S1			S2			S3			S4		
Depth	Vs	Gmax	Depth	Vs	Gmax	Depth	Vs	Gmax	Depth	Vs	Gmax
m	m/s	MPa	m	m/s	MPa	m	m/s	MPa	m	m/s	MPa
0.00	203	90	0.00	439	421	1.70	323	228	0.74	411	368
0.21	203	90	0.68	439	421	2.87	323	228	1.25	411	368
0.21	233	119	0.68	453	447	2.87	449	439	1.25	330	238
0.48	233	119	1.52	453	447	5.13	449	439	1.89	330	238
0.48	223	108	1.52	378	312	5.13	665	965	1.89	466	474
0.81	223	108	2.58	378	312	7.30	665	965	2.33	466	474
0.81	151	50	2.58	303	200	7.30	803	1741	2.33	510	567
1.22	151	50	3.90	303	200	10.02	803	1741	3.53	510	567
1.22	145	46	3.90	501	547	10.02	924	2304	3.53	680	1008
1.74	145	46	5.56	501	547	13.41	924	2304	5.02	680	1008
1.74	289	182	5.56	643	902	13.41	1091	3212	5.02	993	2664
2.38	289	182	7.62	643	1117	17.66	1091	3212	6.89	993	2664
2.38	324	229	7.62	756	1543	17.66	1224	4046	6.89	1117	3371
3.19	324	229	10.20	756	1543	22.96	1224	4046	9.23	1117	3371
3.19	456	453	10.20	816	1799		1342		9.23	1284	4452
4.62	456	453	13.43	816	1799		1417		12.14	1284	4452
4.62	555	670	13.43	837	1890				12.14	1483	5934
6.57	555	670	17.47	837	1890				15.79	1483	5934
6.57	768	1593									
9.01	768	1593									
9.01	856	1979									
12.07	856	1979									
12.07	1038	2912									
15.88	1038	2912									
15.88	1255	4255									
20.65	1255	4255									

S5			S6			S7		
Depth	Vs	Gmax	Depth	Vs	Gmax	Depth	Vs	Gmax
m	m/s	MPa	m	m/s	MPa	m	m/s	MPa
0.00	377	310	1.38	626	783	1.18	222	98
0.34	377	310	2.34	626	1057	2.01	222	98
0.34	391	334	2.34	572	884	2.01	477	455
0.75	391	334	3.54	572	884	3.04	477	455
0.75	381	317	3.54	769	1595	3.04	513	527
1.28	381	317	5.04	769	1595	4.32	513	527
1.28	317	219	5.04	1008	2745	4.32	702	987
1.93	317	219	6.92	1008	2745	5.93	702	1332
1.93	288	181	6.92	1063	3049	5.93	899	2182
2.75	288	181	9.26	1063	3049	7.93	899	2182
2.75	422	388	9.26	973	2557	7.93	1032	2876
3.77	422	388	12.19	973	2557	10.44	1032	2876
3.77	552	664	12.19	1117	3367	10.44	1177	3741
5.04	552	664	15.86	1117	3367	13.58	1177	3741
5.04	600	785	15.86	1441	5608	13.58	1411	5375
6.64	600	785	19.82	1441	5608	16.98	1411	5375
6.64	712	1104						
8.63	712	1367						
8.63	1000	2698						
10.79	1000	2698						

indicates rock density of 2700kg/m³

Gmax: Measures small strain shear stiffness of the ground

S8			S9			S10			S11		
Depth	Vs	Gmax	Depth	Vs	Gmax	Depth	Vs	Gmax	Depth	Vs	Gmax
m	m/s	MPa	m	m/s	MPa	m	m/s	MPa	m	m/s	MPa
0.00	238	123	0.00	360	282	0.00	445	432	1.46	244	130
0.22	238	123	0.75	360	282	0.50	445	432	2.48	244	130
0.22	247	133	0.75	364	289	0.50	451	443	2.48	620	838
0.49	247	133	1.69	364	289	1.13	451	443	3.75	620	838
0.49	225	110	1.69	290	184	1.13	409	365	3.75	583	740
0.83	225	110	2.86	290	184	1.91	409	365	5.34	583	740
0.83	183	73	2.86	218	104	1.91	342	254	5.34	863	2010
1.26	183	73	4.33	218	104	2.89	342	254	7.32	863	2010
1.26	188	77	4.33	322	226	2.89	410	366	7.32	1056	3013
1.80	188	77	6.17	322	280	4.12	410	366	9.80	1056	3013
1.80	279	169	6.17	453	554	4.12	624	850	9.80	1220	4019
2.47	279	169	8.46	453	554	5.65	624	850	12.90	1220	4019
2.47	354	274	8.46	516	720	5.65	745	1498	12.90	1339	4843
3.30	354	274	11.32	516	720	7.56	745	1498	16.77	1339	4843
3.30	416	376	11.32	544	798	7.56	878	2080			
4.35	416	376	14.91	544	798	9.96	878	2080			
4.35	403	354	14.91	740	1480	9.96	910	2234			
5.65	403	354	19.39	740	1480	12.95	910	2234			
5.65	605	989				12.95	1226	4057			
8.90	605	989				16.19	1226	4057			
8.90	921	2289									
12.22	921	2289									
12.22	1057	3017									
16.36	1057	3017									
16.36	1238	4139									
21.53	1238	4139									
21.53	1355	4954									
28.00	1355	4954									

S12			S13			S14		
Depth	Vs	Gmax	Depth	Vs	Gmax	Depth	Vs	Gmax
m	m/s	MPa	m	m/s	MPa	m	m/s	MPa
1.22	314	198	0.70	312	212	1.98	679	922
1.84	314	198	1.57	312	212	3.36	679	922
1.84	340	311	1.57	554	668	3.36	646	836
2.62	340	311	2.65	554	668	5.08	646	836
2.62	488	643	2.65	817	1456	5.08	1323	3503
3.59	488	643	4.01	817	1456	7.24	1323	3503
3.59	573	887	4.01	815	1448	7.24	1438	4138
4.69	573	887	5.71	815	1448	9.93	1438	4138
4.69	729	1437	5.71	1246	4190	9.93	1686	5687
7.09	729	1437	7.84	1246	4190	13.29	1686	5687
7.09	960	2488	7.84	1490	5998	13.29	2042	8337
10.10	960	2488	10.49	1490	5998	17.49	2042	8337
10.10	1208	3939	10.49	1700	7798			
13.85	1208	3939	13.81	1700	7798			
13.85	1385	5178	13.81	1725	8031			
18.54	1385	5178	17.96	1725	8031			
18.54	1660	7441						
24.41	1660	7441						
24.41	1908	9832						
31.74	1908	9832						

S15			S16			S17			S18		
Depth	Vs	Gmax	Depth	Vs	Gmax	Depth	Vs	Gmax	Depth	Vs	Gmax
m	m/s	MPa	m	m/s	MPa	m	m/s	MPa	m	m/s	MPa
2.33	955	2461	0.00	360	283	0.84	391	306	1.53	437	417
3.52	955	2461	0.14	360	283	1.27	391	306	2.59	437	517
3.52	903	2203	0.14	390	331	1.27	356	253	2.59	473	605
5.02	903	2203	0.33	390	331	1.81	356	253	3.91	473	605
5.02	1086	3187	0.33	392	335	1.81	465	583	3.91	671	1214
6.88	1086	3187	0.55	392	335	2.48	465	583	5.57	671	1214
6.88	1504	6109	0.55	343	257	2.48	742	1485	5.57	913	2251
9.21	1504	6109	0.83	343	257	3.32	742	1485	7.64	913	2251
9.21	1752	8284	0.83	294	189	3.32	928	2326	7.64	1105	3294
12.13	1752	8284	1.19	294	189	4.38	928	2326	10.22	1105	3294
12.13	2067	11541	1.19	302	199	4.38	1055	3006	10.22	1288	4482
15.77	2067	11541	1.63	302	199	5.69	1055	3006	13.46	1288	4482
			1.63	503	552	5.69	1298	4547	13.46	1549	6475
			2.18	503	684	8.75	1298	4547	17.50	1549	6475
			2.18	580	909	8.75	1583	6767			
			2.87	580	909	11.71	1583	6767			
			2.87	703	1332	11.71	1828	9023			
			3.74	703	1332	15.42	1828	9023			
			3.74	819	1811	15.42	1805	8798			
			5.56	819	1811	20.05	1805	8798			
			5.56	1260	4285						
			7.63	1260	4285						
			7.63	1459	5744						
			10.22	1459	5744						
			10.22	1713	7918						
			13.45	1713	7918						
			13.45	1859	9327						
			17.49	1859	9327						

S19			S20			S21		
Depth	Vs	Gmax	Depth	Vs	Gmax	Depth	Vs	Gmax
m	m/s	MPa	m	m/s	MPa	m	m/s	MPa
1.75	898	1759	0.44	270	159	2.39	1028	2851
2.64	898	2179	0.74	270	159	3.62	1028	2851
2.64	850	1951	0.74	315	217	3.62	948	2426
3.76	850	1951	1.11	315	217	5.15	948	2426
3.76	922	2293	1.11	528	754	5.15	1032	2874
5.16	922	2293	1.59	528	754	7.07	1032	2874
5.16	1323	4728	1.59	611	1007	7.07	1506	6128
6.91	1323	4728	2.18	611	1007	9.47	1506	6128
6.91	1565	6616	2.18	521	734	9.47	1774	8497
9.09	1565	6616	2.91	521	734	12.46	1774	8497
9.09	1545	6445	2.91	642	1112	12.46	2093	11825
11.82	1545	6445	3.44	642	1112	16.20	2093	11825
			3.44	952	2448			
			5.20	952	2448			
			5.20	960	2486			
			7.41	960	2486			
			7.41	1386	5185			
			10.16	1386	5185			
			10.16	1676	7583			
			13.60	1676	7583			
			13.60	1868	9424			
			17.90	1868	9424			
			17.90	1837	9108			
			23.28	1837	9108			

S22			S23		
Depth	Vs	Gmax	Depth	Vs	Gmax
m	m/s	MPa	m	m/s	MPa
1.43	606	801	1.48	586	688
2.43	606	<i>993</i>	2.51	586	688
2.43	636	1092	2.51	945	1786
3.67	636	1092	3.80	945	1786
3.67	1113	3347	3.80	1211	2931
5.22	1113	3347	5.41	1211	2931
5.22	1259	4281	5.41	1253	3140
7.16	1259	4281	7.42	1253	3140
7.16	1230	4086	7.42	1367	3740
9.59	1230	4086	9.94	1367	3740
9.59	1375	5107	9.94	1523	4641
12.62	1375	5107	13.08	1523	4641
12.62	1827	9013	13.08	1472	5847
16.41	1827	9013	17.01	1472	5847
			17.01	1990	10696
			21.26	1990	10696

indicates rock density of 2700kg/m³

Gmax: Measures small strain shear stiffness of the ground

APPENDIX A:IV CALCULATED MODULI

	Calculation	n of dynamic i	moduli - S1				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
0.00	360	203	2180	0.265	.902	0.228	0.162
0.21	360	203	2180	0.265	.902	0.228	0.162
0.21	360	233	2180	0.138	.119	0.270	0.124
0.48	360	233	2180	0.138	.119	0.270	0.124
0.48	360	223	2180	0.190	.108	0.257	0.138
0.81	360	223	2180	0.190	.108	0.257	0.138
0.81	360	151	2180	0.393	.050	0.138	0.216
1.22	360	151	2180	0.393	.050	0.138	0.216
1.22	360	145	2180	0.403	.046	0.129	0.221
1.74	360	145	2180	0.403	.046	0.129	0.221
1.74	1243	289	2180	0.471	.181	0.535	3.126
2.38	1243	289	2180	0.471	.181	0.535	3.126
2.38	1243	324	2180	0.463	.229	0.671	3.063
3.19	1243	324	2180	0.463	.229	0.671	3.063
3.19	1243	456	2180	0.422	.453	1.290	2.764
4.62	1243	456	2180	0.422	.453	1.290	2.764
4.62	1243	555	2180	0.376	.670	1.844	2.474
6.57	1243	555	2180	0.376	.670	1.844	2.474
6.57	3854	768	2700	0.479	1.59	4.714	37.980
9.01	3854	768	2700	0.479	1.59	4.714	37.980
9.01	3854	856	2700	0.474	1.979	5.833	37.466
12.07	3854	856	2700	0.474	1.979	5.833	37.466
12.07	3854	1038	2700	0.461	2.912	8.507	36.222
15.88	3854	1038	2700	0.461	2.912	8.507	36.222
15.88	3854	1255	2700	0.441	4.255	12.260	34.431
20.65	3854	1255	2700	0.441	4.255	12.260	34.431
* from Davie	s & Schulteis	ss, 1980.					
	Calculation	of dynamic r	noduli - S2				
--------------	----------------	--------------	-------------	----------	---------	----------	---------
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
	-		-	ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
1.52	1038	378	2180	0.424	.312	0.887	1.933
2.58	1038	378	2180	0.424	.312	0.887	1.933
2.58	1038	303	2180	0.454	.200	0.581	2.082
3.90	1038	303	2180	0.454	.200	0.581	2.082
3.90	1038	501	2180	0.348	.547	1.476	1.619
5.56	1038	501	2180	0.348	.547	1.476	1.619
5.56	1038	643	2180	0.188	.902	2.143	1.146
7.62	3849	643	2700	0.486	1.117	3.319	38.511
7.62	3849	756	2700	0.480	1.543	4.567	37.943
10.20	3849	756	2700	0.480	1.543	4.567	37.943
10.20	3849	816	2700	0.476	1.799	5.313	37.601
13.43	3849	816	2700	0.476	1.799	5.313	37.601
13.43	3849	837	2700	0.475	1.890	5.575	37.481
17.47	3849	837	2700	0.475	1.890	5.575	37.481
* from Davie	es & Schulteis	ss, 1980.					

	Calculation	of dynamic m	oduli - S3				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
-				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
2.87	1045	323	2180	0.447	.228	0.660	2.077
2.87	1045	449	2180	0.387	.439	1.218	1.795
5.13	1045	449	2180	0.387	.439	1.218	1.795
5.13	1045	665	2180	0.159	.965	2.238	1.093
7.30	1045	665	2180	0.159	.965	2.238	1.093
7.30	4354	803	2700	0.482	1.741	5.163	48.863
10.02	4354	803	2700	0.482	1.741	5.163	48.863
10.02	4354	924	2700	0.476	2.304	6.803	48.113
13.41	4354	924	2700	0.476	2.304	6.803	48.113
13.41	4354	1091	2700	0.467	3.212	9.420	46.903
17.66	4354	1091	2700	0.467	3.212	9.420	46.903
17.66	4354	1224	2700	0.457	4.046	11.790	45.791
22.96	4354	1224	2700	0.457	4.046	11.790	45.791
* from Davie	s & Schulteis	s, 1980.					

	Calculation	of dynamic mc	duli - S4				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
1.89	1167	330	2180	0.456	.238	0.693	2.652
1.89	1167	466	2180	0.405	.474	1.331	2.337
2.33	1167	466	2180	0.405	.474	1.331	2.337
2.33	1167	510	2180	0.382	.567	1.566	2.214
3.53	1167	510	2180	0.382	.567	1.566	2.214
3.53	1167	680	2180	0.243	1.008	2.506	1.625
5.02	1167	680	2180	0.243	1.008	2.506	1.625
5.02	4655	993	2700	0.476	2.664	7.866	54.954
6.89	4655	993	2700	0.476	2.664	7.866	54.954
6.89	4655	1117	2700	0.469	3.371	9.908	54.011
9.23	4655	1117	2700	0.469	3.371	9.908	54.011
9.23	4655	1284	2700	0.459	4.452	12.990	52.570
12.14	4655	1284	2700	0.459	4.452	12.990	52.570
12.14	4655	1483	2700	0.444	5.934	17.133	50.594
15.79	4655	1483	2700	0.444	5.934	17.133	50.594
* from Davie	es & Schulteis	s, 1980.					

	Calculation	of dynamic n	noduli - S5				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
-	-		-	ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
1.28	1500	317	2180	0.477	.219	0.646	4.614
1.93	1500	317	2180	0.477	.219	0.646	4.614
1.93	1500	288	2180	0.481	.181	0.535	4.664
2.75	1500	288	2180	0.481	.181	0.535	4.664
2.75	1500	422	2180	0.457	.388	1.131	4.387
3.77	1500	422	2180	0.457	.388	1.131	4.387
3.77	1500	552	2180	0.422	.665	1.889	4.019
5.04	1500	552	2180	0.422	.665	1.889	4.019
5.04	1500	600	2180	0.405	.785	2.207	3.858
6.64	1500	600	2180	0.405	.785	2.207	3.858
6.64	1500	712	2180	0.355	1.104	2.991	3.433
8.63	3749	712	2700	0.481	1.367	4.051	36.126
8.63	3749	1000	2700	0.462	2.698	7.889	34.351
10.79	3749	1000	2700	0.462	2.698	7.889	34.351
* from Davie	es & Schulteis	ss, 1980.					

	Calculation	of dynamic m	oduli - S6				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
			-	ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
			-		Dynamic	Dynamic	Dynamic
					Gmax	Emax	-
2.34	1657	626	2700	0.417	1.057	2.995	6.004
2.34	1657	572	2700	0.432	.884	2.532	6.235
3.54	1657	572	2700	0.432	.884	2.532	6.235
3.54	1657	769	2700	0.363	1.595	4.348	5.286
5.04	1657	769	2700	0.363	1.595	4.348	5.286
5.04	1657	1008	2700	0.206	2.745	6.621	3.754
6.92	1657	1008	2700	0.206	2.745	6.621	3.754
6.92	3723	1063	2700	0.456	3.049	8.878	33.358
9.26	3723	1063	2700	0.456	3.049	8.878	33.358
9.26	3723	973	2700	0.463	2.557	7.484	34.014
12.19	3723	973	2700	0.463	2.557	7.484	34.014
12.19	3723	1117	2700	0.451	3.367	9.768	32.935
15.86	3723	1117	2700	0.451	3.367	9.768	32.935
15.86	3723	1441	2700	0.412	5.608	15.836	29.946
19.82	3723	1441	2700	0.412	5.608	15.836	29.946
* from Davie	es & Schulteis	s, 1980.					

	Calculation	of dynamic mod	duli - S7				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
1.18	423	222	2180	0.311	.107	0.281	0.247
2.01	1334	222	2180	0.486	.107	0.318	3.737
2.01	1334	477	2180	0.427	.496	1.415	3.218
3.04	1334	477	2180	0.427	.496	1.415	3.218
3.04	1334	513	2180	0.413	.574	1.623	3.114
4.32	1334	513	2180	0.413	.574	1.623	3.114
4.32	1334	702	2180	0.308	1.075	2.814	2.446
5.93	3779	702	2700	0.482	1.332	3.948	36.783
5.93	3779	899	2700	0.470	2.182	6.416	35.649
7.93	3779	899	2700	0.470	2.182	6.416	35.649
7.93	3779	1032	2700	0.460	2.876	8.397	34.723
10.44	3779	1032	2700	0.460	2.876	8.397	34.723
10.44	3779	1177	2700	0.446	3.741	10.821	33.570
13.58	3779	1177	2700	0.446	3.741	10.821	33.570
13.58	3779	1411	2700	0.419	5.375	15.255	31.391
16.98	3779	1411	2700	0.419	5.375	15.255	31.391
* from Davie	s & Schulteiss	s, 1980.					

	Calculation	n of dynamic n	noduli - S8				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
	·		-	ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
			-		Dynamic	Dynamic	Dynamic
					Gmax	Emax	-
0.00	388	238	2180	0.199	.123	0.296	0.164
0.22	388	238	2180	0.199	.123	0.296	0.164
0.22	388	247	2180	0.159	.133	0.309	0.151
0.49	388	247	2180	0.159	.133	0.309	0.151
0.49	388	225	2180	0.247	.110	0.275	0.181
0.83	388	225	2180	0.247	.110	0.275	0.181
0.83	388	183	2180	0.356	.073	0.199	0.231
1.26	388	183	2180	0.356	.073	0.199	0.231
1.26	388	188	2180	0.347	.077	0.207	0.226
1.80	388	188	2180	0.347	.077	0.207	0.226
1.80	1163	279	2180	0.470	.169	0.498	2.723
2.47	1163	279	2180	0.470	.169	0.498	2.723
2.47	1163	354	2180	0.449	.274	0.794	2.583
3.30	1163	354	2180	0.449	.274	0.794	2.583
3.30	1163	416	2180	0.427	.376	1.074	2.447
4.35	1163	416	2180	0.427	.376	1.074	2.447
4.35	1163	403	2180	0.432	.354	1.014	2.476
5.65	1163	403	2180	0.432	.354	1.014	2.476
5.65	3390	605	2700	0.484	.989	2.936	29.709
8.90	3390	605	2700	0.484	.989	2.936	29.709
8.90	3390	921	2700	0.460	2.289	6.685	27.977
12.22	3390	921	2700	0.460	2.289	6.685	27.977
12.22	3390	1057	2700	0.446	3.017	8.726	27.006
16.36	3390	1057	2700	0.446	3.017	8.726	27.006
16.36	3390	1238	2700	0.423	4.139	11.781	25.510
21.53	3390	1238	2700	0.423	4.139	11.781	25.510
21.53	3390	1355	2700	0.405	4.954	13.921	24.423
28.00	3390	1355	2700	0.405	4.954	13.921	24.423
* from Davies	s & Schultei	ss, 1980.					

	Calculation	of dynamic mo	oduli - S9				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
			-	ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
1.69	1372	290	2180	0.477	.184	0.542	3.859
2.86	1372	290	2180	0.477	.184	0.542	3.859
2.86	1372	218	2180	0.487	.104	0.309	3.965
4.33	1372	218	2180	0.487	.104	0.309	3.965
4.33	1372	322	2180	0.471	.226	0.665	3.802
6.17	3230	322	2700	0.495	.280	0.837	27.796
6.17	3230	453	2700	0.490	.554	1.650	27.430
8.46	3230	453	2700	0.490	.554	1.650	27.430
8.46	3230	516	2700	0.487	.720	2.141	27.209
11.32	3230	516	2700	0.487	.720	2.141	27.209
11.32	3230	544	2700	0.485	.798	2.370	27.105
14.91	3230	544	2700	0.485	.798	2.370	27.105
14.91	3230	740	2700	0.472	1.480	4.357	26.196
19.39	3230	740	2700	0.472	1.480	4.357	26.196
* from Davie	s & Schulteis	s, 1980.					

	Calculation	of dynamic mo	duli - S10				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
1.13	604	409	2180	0.076	.365	0.785	0.308
1.91	1514	409	2180	0.461	.365	1.067	4.510
1.91	1514	342	2180	0.473	.254	0.750	4.658
2.89	1514	342	2180	0.473	.254	0.750	4.658
2.89	1514	410	2180	0.461	.366	1.068	4.509
4.12	1514	410	2180	0.461	.366	1.068	4.509
4.12	1514	624	2180	0.398	.850	2.376	3.864
5.65	1514	624	2180	0.398	.850	2.376	3.864
5.65	3667	745	2700	0.478	1.498	4.430	34.309
7.56	3667	745	2700	0.478	1.498	4.430	34.309
7.56	3667	878	2700	0.470	2.080	6.114	33.533
9.96	3667	878	2700	0.470	2.080	6.114	33.533
9.96	3667	910	2700	0.467	2.234	6.555	33.328
12.95	3667	910	2700	0.467	2.234	6.555	33.328
12.95	3667	1226	2700	0.437	4.057	11.659	30.898
16.19	3667	1226	2700	0.437	4.057	11.659	30.898
* from Davie	es & Schulteis:	s, 1980.					

	Calculation	of dynamic mo	duli - S11				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
1.46	510	244	2180	0.352	.130	0.351	0.394
2.48	1379	244	2180	0.484	.130	0.385	3.973
2.48	1379	620	2180	0.373	.838	2.302	3.028
3.75	1379	620	2180	0.373	.838	2.302	3.028
3.75	1379	583	2180	0.391	.740	2.059	3.159
5.34	1379	583	2180	0.391	.740	2.059	3.159
5.34	3959	863	2700	0.475	2.010	5.929	39.640
7.32	3959	863	2700	0.475	2.010	5.929	39.640
7.32	3959	1056	2700	0.462	3.013	8.809	38.301
9.80	3959	1056	2700	0.462	3.013	8.809	38.301
9.80	3959	1220	2700	0.448	4.019	11.635	36.960
12.90	3959	1220	2700	0.448	4.019	11.635	36.960
12.90	3959	1339	2700	0.435	4.843	13.902	35.862
16.77	3959	1339	2700	0.435	4.843	13.902	35.862
* from Davie	es & Schulteiss	s, 1980.					

	Calculation	n of dynamic	moduli - S12				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
1.22	505	314	2180	0.184	.215	0.510	0.269
1.84	505	314	2180	0.184	.215	0.510	0.269
1.84	1490	340	2700	0.473	.311	0.917	5.579
2.62	1490	340	2700	0.473	.311	0.917	5.579
2.62	1490	488	2700	0.440	.643	1.853	5.136
3.59	1490	488	2700	0.440	.643	1.853	5.136
3.59	1490	573	2700	0.413	.887	2.508	4.811
4.69	1490	573	2700	0.413	.887	2.508	4.811
4.69	1490	729	2700	0.342	1.437	3.857	4.079
7.09	3851	729	2700	0.481	1.437	4.257	38.126
7.09	3851	960	2700	0.467	2.488	7.300	36.724
10.10	3851	960	2700	0.467	2.488	7.300	36.724
10.10	3851	1208	2700	0.445	3.939	11.387	34.790
13.85	3851	1208	2700	0.445	3.939	11.387	34.790
13.85	3851	1385	2700	0.426	5.178	14.764	33.138
18.54	3851	1385	2700	0.426	5.178	14.764	33.138
18.54	3851	1660	2700	0.386	7.441	20.625	30.120
24.41	3851	1660	2700	0.386	7.44	20.625	30.120
24.41	3851	1908	2700	0.337	9.832	26.296	26.932
31.74	3851	1908	2700	0.337	9.832	26.296	26.932
		11		1	1	1	
* from Davie	s & Schultei	ss, 1980.					

	Calculation	of dynamic r	noduli - S13				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
0.70	544	312	2180	0.256	.212	0.532	0.363
1.57	544	312	2180	0.256	.212	0.532	0.363
1.57	1465	554	2180	0.417	.668	1.894	3.787
2.65	1465	554	2180	0.417	.668	1.894	3.787
2.65	1465	817	2180	0.274	1.456	3.710	2.737
4.01	1465	817	2180	0.274	1.456	3.710	2.737
4.01	1465	815	2180	0.276	1.448	3.695	2.748
5.71	1465	815	2180	0.276	1.448	3.695	2.748
5.71	3851	1246	2700	0.442	4.190	12.079	34.456
7.84	3851	1246	2700	0.442	4.190	12.079	34.456
7.84	3851	1490	2700	0.412	5.998	16.937	32.044
10.49	3851	1490	2700	0.412	5.998	16.937	32.044
10.49	3851	1700	2700	0.379	7.798	21.509	29.644
13.81	3851	1700	2700	0.379	7.798	21.509	29.644
13.81	3851	1725	2700	0.375	8.031	22.079	29.333
17.96	3851	1725	2700	0.375	8.031	22.079	29.333

	Calculation	of dynamic mo	oduli - S14				
Depth	Vp	Vs	density	Poissons ratio	Shear* Mod.	Youngs * Mod.	Bulk* Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
			-		Dynamic	Dynamic	Dynamic
					Gmax	Emax	-
3.36	1655	679	2700	0.399	1.244	3.481	5.736
3.36	1655	646	2700	0.410	1.128	3.181	5.891
5.08	1655	646	2700	0.410	1.128	3.181	5.891
5.08	4222	1323	2700	0.446	4.729	13.672	41.823
7.24	4222	1323	2700	0.446	4.729	13.672	41.823
7.24	4222	1438	2700	0.434	5.587	16.027	40.679
9.93	4222	1438	2700	0.434	5.587	16.027	40.679
9.93	4222	1686	2700	0.405	7.678	21.577	37.891
13.29	4222	1686	2700	0.405	7.678	21.577	37.891
13.29	4222	2042	2700	0.347	11.255	30.329	33.122
17.49	4222	2042	2700	0.347	11.255	30.329	33.122
* from Davies	s & Schulteis	s, 1980.					-

	Calculation	of dynamic mo	oduli - S15				
Depth	Vp	Vs	density	Poissons ratio	Shear* Mod.	Youngs * Mod.	Bulk* Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	-
2.33	1819	955	2700	0.310	2.461	6.447	5.653
3.52	1819	955	2700	0.310	2.461	6.447	5.653
3.52	1819	903	2700	0.336	2.203	5.888	5.996
5.02	1819	903	2700	0.336	2.203	5.888	5.996
5.02	4025	1086	2700	0.461	3.187	9.309	39.493
6.88	4025	1086	2700	0.461	3.187	9.309	39.493
6.88	4025	1504	2700	0.419	6.109	17.336	35.596
9.21	4025	1504	2700	0.419	6.109	17.336	35.596
9.21	4025	1752	2700	0.383	8.284	22.916	32.697
12.13	4025	1752	2700	0.383	8.284	22.916	32.697
12.13	4025	2067	2700	0.321	11.541	30.486	28.354
15.77	4025	2067	2700	0.321	11.541	30.486	28.354
* from Davie	s & Schulteis	s, 1980.		1	L	1	1

	Calculation	of dynamic m	oduli - S16						
Depth	٧p	Vs	density	Poissons	Shear*	Youngs *	Bulk*		
•	· ·		,	ratio	Mod.	Mod.	Mod.		
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa		
(U)			U		Dynamic	Dynamic	Dynamic		
					Gmax	Emax	-		
0.83	454	294	2180	0.137	.189	0.430	0.197		
1.19	454	294	2180	0.137	.189	0.430	0.197		
1.19	454	302	2180	0.104	.199	0.439	0.184		
1.63	454	302	2180	0.104	.199	0.439	0.184		
1.63	1466	503	2700	0.433	.684	1.960	4.891		
2.18	1466	503	2700	0.433	.684	1.960	4.891		
2.18	1466	580	2700	0.407	.909	2.559	4.590		
2.87	1466	580	2700	0.407	.909	2.559	4.590		
2.87	1466	703	2700	0.351	1.332	3.600	4.026		
3.74	1466	703	2700	0.351	1.332	3.600	4.026		
3.74	1466	819	2700	0.273	1.811	4.612	3.388		
5.56	1466	819	2700	0.273	1.811	4.612	3.388		
5.56	3909	1260	2700	0.442	4.285	12.359	35.543		
7.63	3909	1260	2700	0.442	4.285	12.359	35.543		
7.63	3909	1459	2700	0.419	5.744	16.302	33.599		
10.22	3909	1459	2700	0.419	5.744	16.302	33.599		
10.22	3909	1713	2700	0.381	7.918	21.874	30.699		
13.45	3909	1713	2700	0.381	7.918	21.874	30.699		
13.45	3909	1859	2700	0.354	9.327	25.256	28.821		
17.49	3909	1859	2700	0.354	9.327	25.256	28.821		
* from Davie	* from Davies & Schulteiss, 1980.								

	Calculation	of dynamic mod	duli - S17				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
-				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
1.81	1705	465	2700	0.460	.583	1.702	7.072
2.48	1705	465	2700	0.460	.583	1.702	7.072
2.48	1705	742	2700	0.383	1.485	4.108	5.869
3.32	1705	742	2700	0.383	1.485	4.108	5.869
3.32	1705	928	2700	0.289	2.326	5.999	4.747
4.38	1705	928	2700	0.289	2.326	5.999	4.747
4.38	1705	1055	2700	0.190	3.006	7.152	3.841
5.69	1705	1055	2700	0.190	3.006	7.152	3.841
5.69	3984	1298	2700	0.441	4.547	13.102	36.792
8.75	3984	1298	2700	0.441	4.547	13.102	36.792
8.75	3984	1583	2700	0.406	6.767	19.032	33.833
11.71	3984	1583	2700	0.406	6.767	19.032	33.833
11.71	3984	1828	2700	0.367	9.023	24.662	30.825
15.42	3984	1828	2700	0.367	9.023	24.662	30.825
15.42	3984	1805	2700	0.371	8.798	24.122	31.124
20.05	3984	1805	2700	0.371	8.798	24.122	31.124
* from Davie	es & Schulteise	s, 1980.					

	Calculation	n of dynamic	moduli - S18						
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*		
	•		-	ratio	Mod.	Mod.	Mod.		
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa		
					Dynamic	Dynamic	Dynamic		
					Gmax	Emax			
2.59	1538	437	2700	0.456	.517	1.504	5.698		
2.59	1538	473	2700	0.448	.605	1.752	5.580		
3.91	1538	473	2700	0.448	.605	1.752	5.580		
3.91	1538	671	2700	0.383	1.214	3.357	4.768		
5.57	3645	671	2700	0.482	1.214	3.600	34.254		
5.57	3645	913	2700	0.467	2.251	6.601	32.871		
7.64	3645	913	2700	0.467	2.251	6.601	32.871		
7.64	3645	1105	2700	0.449	3.294	9.550	31.480		
10.22	3645	1105	2700	0.449	3.294	9.550	31.480		
10.22	3645	1288	2700	0.429	4.482	12.805	29.897		
13.46	3645	1288	2700	0.429	4.482	12.805	29.897		
13.46	3645	1549	2700	0.390	6.475	17.999	27.239		
17.50	3645	1549	2700	0.390	6.475	17.999	27.239		
* from Davie	* from Davies & Schulteiss, 1980.								

	Calculation	dynamic modu	uli - S19				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
2.64	1753	898	2700	0.322	2.179	5.761	5.392
2.64	1753	850	2700	0.346	1.951	5.253	5.696
3.76	1753	850	2700	0.346	1.951	5.253	5.696
3.76	1753	922	2700	0.309	2.293	6.004	5.239
5.16	1753	922	2700	0.309	2.293	6.004	5.239
5.16	4125	1323	2700	0.443	4.728	13.641	39.639
6.91	4125	1323	2700	0.443	4.728	13.641	39.639
6.91	4125	1565	2700	0.416	6.616	18.736	37.120
9.09	4125	1565	2700	0.416	6.616	18.736	37.120
9.09	4125	1545	2700	0.418	6.445	18.283	37.349
11.82	4125	1545	2700	0.418	6.445	18.283	37.349
* from Davie	s & Schulteis	s, 1980.					

	Calculation	of dynamic m	oduli - S20				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
0.44	644	270	2180	0.394	.159	0.442	0.693
0.74	644	270	2180	0.394	.159	0.442	0.693
0.74	644	315	2180	0.342	.217	0.582	0.615
1.11	644	315	2180	0.342	.217	0.582	0.615
1.11	1606	528	2700	0.439	.754	2.170	5.959
1.59	1606	528	2700	0.439	.754	2.170	5.959
1.59	1606	611	2700	0.415	1.007	2.850	5.621
2.18	1606	611	2700	0.415	1.007	2.850	5.621
2.18	1606	521	2700	0.441	.734	2.114	5.986
2.91	1606	521	2700	0.441	.734	2.114	5.986
2.91	1606	642	2700	0.405	1.112	3.124	5.482
3.44	1606	642	2700	0.405	1.112	3.124	5.482
3.44	4180	952	2700	0.473	2.448	7.210	43.911
5.20	4180	952	2700	0.473	2.448	7.210	43.911
5.20	4180	960	2700	0.472	2.486	7.321	43.860
7.41	4180	960	2700	0.472	2.486	7.321	43.860
7.41	4180	1386	2700	0.438	5.185	14.916	40.262
10.16	4180	1386	2700	0.438	5.185	14.916	40.262
10.16	4180	1676	2700	0.404	7.583	21.297	37.065
13.60	4180	1676	2700	0.404	7.583	21.297	37.065
13.60	4180	1868	2700	0.375	9.424	25.921	34.610
17.90	4180	1868	2700	0.375	9.424	25.921	34.610
17.90	4180	1837	2700	0.380	9.108	25.144	35.032
23.28	4180	1837	2700	0.380	9.108	25.144	35.032
* from Davie	s & Schulteis	s, 1980.					

	Calculation	of dynamic mo	oduli - S21				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
2.39	1666	1028	2700	0.193	2.851	6.802	3.693
3.62	1666	1028	2700	0.193	2.851	6.802	3.693
3.62	1666	948	2700	0.261	2.426	6.117	4.259
5.15	4000	948	2700	0.470	2.426	7.135	39.965
5.15	4000	1032	2700	0.464	2.874	8.416	39.369
7.07	4000	1032	2700	0.464	2.874	8.416	39.369
7.07	4000	1506	2700	0.417	6.1287	17.370	35.030
9.47	4000	1506	2700	0.417	6.128	17.370	35.030
9.47	4000	1774	2700	0.378	8.497	23.410	31.871
12.46	4000	1774	2700	0.378	8.497	23.410	31.871
12.46	4000	2093	2700	0.312	11.825	31.017	27.434
16.20	4000	2093	2700	0.312	11.825	31.017	27.434
* from Davies	s & Schulteis	s, 1980.					

Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynam
					Gmax	Emax	
2.43	1750	606	2700	0.432	.993	2.843	6.945
2.43	1750	636	2700	0.424	1.092	3.110	6.812
3.67	1750	636	2700	0.424	1.092	3.110	6.812
3.67	1750	1113	2700	0.160	3.347	7.765	3.806
5.22	1750	1113	2700	0.160	3.347	7.765	3.806
5.22	3892	1259	2700	0.442	4.281	12.343	35.19
7.16	3892	1259	2700	0.442	4.281	12.343	35.19
7.16	3892	1230	2700	0.445	4.086	11.803	35.45
9.59	3892	1230	2700	0.445	4.086	11.803	35.45
9.59	3892	1375	2700	0.429	5.107	14.591	34.09
12.62	3892	1375	2700	0.429	5.107	14.591	34.09
12.62	3892	1827	2700	0.359	9.013	24.492	28.88
16.41	3892	1827	2700	0.359	9.013	24.492	28.88

	Calculation	of dynamic m	oduli - S23				
Depth	Vp	Vs	density	Poissons	Shear*	Youngs *	Bulk*
				ratio	Mod.	Mod.	Mod.
(m bgl)	m/sec	m/sec	kg/m^3		GPa	GPa	GPa
					Dynamic	Dynamic	Dynamic
					Gmax	Emax	
2.51	1741	586	2700	0.436	.928	2.666	6.946
2.51	1741	945	2700	0.291	2.411	6.226	4.969
3.80	1741	945	2700	0.291	2.411	6.226	4.969
3.80	1741	1211	2700	0.032	3.957	8.167	2.908
5.41	1741	1211	2700	0.032	3.957	8.167	2.908
5.41	4061	1253	2700	0.447	4.239	12.271	38.875
7.42	4061	1253	2700	0.447	4.239	12.271	38.875
7.42	4061	1367	2700	0.436	5.049	14.501	37.796
9.94	4061	1367	2700	0.436	5.049	14.501	37.796
9.94	4061	1523	2700	0.418	6.265	17.768	36.175
13.08	4061	1523	2700	0.418	6.265	17.768	36.175
13.08	4061	1472	2700	0.424	5.847	16.658	36.731
17.01	4061	1472	2700	0.424	5.847	16.658	36.731
17.01	4061	1990	2700	0.342	10.696	28.706	30.267
21.26	4061	1990	2700	0.342	10.696	28.706	30.267
* from Davie	es & Schulteis	s, 1980.					

APPENDIX A:V EXCAVATABILITY

The seismic velocity of a rock formation is related to characteristics of the rock mass which include rock hardness and strength, degree of weathering and discontinuities. Usually the velocity is just one of several parameters used in the assessment of excavatability. The excavatability of a rock formation is favoured by the following factors:

- Open fractures, faults and other planes of weakness of any kind
- Weathering
- Brittleness and crystalline nature
- High degree of stratification or lamination
- Large grain size
- Low compressive strength

Weaver (1975) presented a comprehensive rippability rating chart (Fig. A1) in which the p-wave velocity value and the relevant geological factors could be entered and assigned appropriate weightings. The total weighted index was found to correlate very well with actual rippability.

Rock class		II	111	IV	V
Description	Very good rock	Good rock	Fair rock	Poor rock	Very poor rock
Seismic velocity (Vp)					
(m/s)	>2150	2150-1850	1850-1500	1500-1200	1200-450
Rating	26	24	20	12	5
Rock hardness	Extremely hard	Very hard rock	Hard rock	Soft rock	Very soft rock
	rock	_	•		
Rating	10	5	2	1	0
Pook weathering	Unwoothorod	Cliphtly	Weethored	Highly	Completely
HUCK weathening	Unweathered	weathered	Weathered	weathered	weathered
Bating	9	7	5	3	1
rialing	Ū		0	0	
Joint spacing (mm)	>3000	3000-1000	1000-300	300-50	<50
Rating	30	25	20	10	5
Joint continuity	Non continuous	Slightly	Continuous-	Continuous-	Continuous-
		continuous	no gouge	some gouge	with gouge
Rating	5	5	3	0	0
				_	
Joint gouge	No separation	Slight separation	Separation	Gouge	Gouge >5mm
Dation	-	-	<1mm	<5mm	
Rating	5	5	4	3	1
Strike and din	Verv	Unfavourable	Slightly	Favourable	Verv
orientation	unfavourable	Onlavourable	unfavourable	i avourable	favourable
onentation	anavourable		anavoarabie		lavourable
Rating	15	13	10	5	3
Ū					
Total rating	100-90	90-70*	70-50	50-25	<25
Rippability	Blasting	Extremely hard	Very hard	Hard ripping	Easy ripping
assessment		ripping and	ripping		
		blasting			
Tractor horsepower		770/385	385/270	270/180	180
I ractor kilowatts		575/290	290/200	200/135	135

Fig A:1 Rippability Rating Chart (according to Weaver 1975)

Appendix B - Main Onshore SI Pump Test Report

Tarbert / Ballylongford Main Onshore SI Pump Test Report

CONTENTS

B1.0	Introduction	3
B2.0	Geological Conditions	3
B3.0	Weather Conditions	3
B4.0	Pump Well and Monitoring Well Construction	3
	B4.1 Well Development	4
B5.0	Pump Test Specification	4
B6.0	Water Levels Prior to Pump Test	4
B7.0	Details of Test Set Up, Step Test and Pump Test Set Up	4
	B7.1 Step Test	5
	B7.2 Pump Test	5
B8.0	Results of Pump Test	6

Figures

Figure B:1	Location Map			
Figure B:2	Recorded drawdown and discharge rates in the pump well			
Figure B:3	Recorded drawdown and groundwater temperatures in the pump well			
Figure B:4	Recorded drawdown in the pump well test and the response in the monitoring wells MW1 and MW2.			
Figure B:5	Recorded drawdown in the pump well and the response in the monitoring well MW1 during the test plotted on a log/log scale.			
Figure B:6	Recovery data from both the step test and the pump test			
Figure B:7	Drawdown and discharge relationship in the pump well during the step test.			
Figure B:8	Drawdown in the pump well during the step test and the response in monitoring well MW1.			
Tables				

Table B:1Pump Test and Step Test Data Sheet

Appendices

Appendix B:1 – Corehole Field Records (Figures B9 – B11)

Appendix B:2 - Digital Pump Test Readings (on CD)

B1.0 Introduction

IGSL were employed to undertake a pump test as part of a ground investigation for a proposed Liquid Natural Gas Terminal near Ballylongford, Co. Kerry. Water will be required for the production of concrete and for hydrotesting the LNG tanks. The purpose of the pump test was to determine if an adequate amount of water could be supplied by the on-site ground water conditions. IGSL understands that approximately 6 litres/second was the required design flow. The pump test was undertaken in January 2007 and comprised of monitoring drawdown, discharge and recovery in the pump well and draw down and recovery in two number monitoring wells.

Yield from the well was poor and the required design flow rate was not achieved.

B2.0 Geological conditions

The pump test was carried out after the main ground investigation works had been completed. Observations on site, namely marshy waterlogged ground conditions and the presence of reeds indicated a pocket of springs the northern western area of the site. Coreholes drilled during the main site investigation phase indicated that artesian water conditions in this section. These springs were believed to be topographical in that the ground surface dipped to the north more sharply than the bedrock and the springs occurred in areas of shallow overburden. The drilling records indicated that the main water bearing zone was likely to be the fractured bedrock immediately below rock head.

The bedrock underlying the site forms part of the Namurian age Shannon Group (siltstones, sandstones and mudstones). The Shannon Group is identified as being a poor aquifer in the Geological Survey of Ireland groundwater records. The overburden is a glacial till, primarily a clay, of low permeability. Given the springs and the impermeability of the overburden, the aquifer is considered to be confined.

The location of the well was chosen by Arup and is located in the north west corner of the site in the an area of springs. See Figure B:1 for location of pump well and monitoring wells. Ground elevation at the pump well is 13.16m OD.

All levels given in this report are to Malin Head Datum.

B3.0 Weather Conditions

Weather conditions during the pump test were generally cool, with scattered showers allowing limited recharge of the aquifer. However in November and December 2006, the two months before the test, unseasonably high rainfall was recorded.

B4.0 Pump Well and Monitoring Well Construction

The pump well (PW01) was constructed using the symmetrix open hole drilling system with an air/mist flush. The diameter of the drill hole was 150 mm. Details of the overburden strata and rock strata encountered are presented in the log in Appendix B:2.

Rock was encountered at 4.6m below ground level (bgl) and the well was drilled into the bedrock to 10m bgl. A 140mm ID HDPE well screen was installed from 4.6m bgl to the base (9.4m plumbed) with a closed pipe in the overburden and finished some 0.5m above surrounding ground level. Some silting of the pump well occurred following construction.

A 50mm ID HDPE pipe had been installed in the nearby borehole RC-23 (MW1) for monitoring groundwater levels. The installation was screened at the rock head interface and was taken to 0.5m above surrounding ground level. RC-07(MW2) contained a 100mm diameter uPVC temporary casing.

It was decided to use these locations as monitoring wells during the pumping test. RC-23 and RC-07 were located some 72m and 232m respectively from the pump well. See Figure B:1 for their locations.

B4.1 Well Development

The well was developed by air lifting.

B5.0 Pump Test Specification

The pumping was carried out in accordance with the following:

- IGSL Ltd. Method Specification,
- BS5930:1999, and
- Project specification

Calculations of the aquifer properties were not required. The two monitoring wells were used to record the response of the aquifer during pumping.

B6.0 Water levels prior to Pump Test

Water levels in the pump well (PW1) and in monitoring well 1 (MW1) were slightly artesian before the commencement of any pumping. Following the drilling of the pump well and the installation of the well screen the well was left to equalise over night. Water levels on the following day were 0.5m above ground level and over flowing the well lining. Monitoring well 2 (MW2) was not artesian. Water levels before pumping were recorded at 0.27m bgl.

B7.0 Details of Test Set Up, Step Test and Pump Test Set Up

Pressure transducers were installed in the pump well and in the two monitoring wells to automatically measure drawdown. A Barologger was installed at ground level adjacent to the coreholes to measure barometric pressure. Manual readings, using a dip meter, were also taken to check and verify the automated water level readings.

Flow rates were measured initially by the pump flow gauge with the quantity pumped being recorded at appropriate intervals to determine discharge rates. As the pump test progressed the flow rate decreased to a level below what the flow gauge could measure therefore it was necessary to manually measure the flow by a timed filling of a container of known volume.

Temperature and electrical conductivity were also recorded during the pump test.

The water from the step and pump tests was discharged some 100m down hill from the pump well. Given the artesian pressures and the low permeable nature of the overburden this discharge location was chosen to ensure there was no feed back to the aquifer.

B7.1 Step Test

A Grundfos SP30 submersible pump was used based on a maximum discharge of 10.51/sec being required. The pump was installed in the pumping well on 5th January 2007 and calibrated. The calibration was effected using a step down test. Three step down tests of 2 hours duration were undertaken. Discharge rates of 1.98, 2.79 and 2.83 litres/second were used. A fourth step with discharge increased to 3.02 l/sec resulted in the water levels with the pump well falling to the level of the inlet of the pump (approximately 8.01m bgl) and was therefore terminated.

Based on the results of the step test the short term yield of the pump well was judged to be approximately 2 litres/second.

Water levels were allowed to recover overnight and the resting groundwater levels prior to the start of the pump test were less than 0.5m bgl in both pump well (PW1 – 0.46m bgl) and monitoring well 1 (MW1 – 0.27m bgl). Water levels in MW2 was recorded at 4.67m

B7.2 Pump Test

The pump test was undertaken for 28.6 hours on the 7th and 8th January 2007. The early discharge rate (for approximately the first five hours) was approximately 2litres/second ($7.2m^3$ /hour). This was consistent with the results of the step test. The discharge rate dropped with time and had reduced to 0.90litres/second ($3.2m^3$ /hour) after 28 hours.

The average discharge over the period of the test (as manually measured) was 1.4litres/second $(5m^3/hour)$. The maximum recorded drawdown within the pump well (PW01) was 7.80m (8.25m bgl) after 24 hours.

The maximum drawdown in monitoring well 1 (MW1) was 2.94m (3.21m bgl). No appreciable drawdown was observed in monitoring well 2 (MW2) during the pump test and the level lifted slightly during the step test. This could possibly be due to rainfall.

Recovery of groundwater levels was monitored over a 20 hour period following cessation of pumping.

A summary of the pump test data is presented on the Summary Data Sheet. The full compiled data set from the pumping test is presented on the CD accompanying this volume, Volume 3, of the factual report.

The complete data sheets contain information date, time, water level and temperature readings which were taken every 30 seconds whilst discharge and electrical conductivity readings were taken at greater intervals. Information is provided for the pump well and monitoring wells during pumping and recovery for both the step test and the pump test.

Some of the data is also presented in graphical format in the figures detailed below.

Figure B:2 illustrates the recorded drawdown in the pump well over the duration of the pump test and also the decrease in discharge rates over this period.

Figure B:3 illustrates the recorded drawdown in the pump well over the duration of the pump test and the groundwater temperatures.

Figure B:4 illustrates the recorded drawdown in the pump well over the duration of the pump test and the response in the monitoring wells MW1 and MW2.

Figure B:5 illustrates the recorded drawdown in the pump well over the duration of the pump test and the response in the monitoring well MW1 during the test plotted on a log/log scale.

Figure B:6 illustrates the recovery data from both the step test and the pump test plotted on a log/log scale.

Figure B:7 illustrates the drawdown and discharge relationship in the pump well during the step test.

Figure B:8 illustrates the drawdown in the pump well during the step test and the response in monitoring well MW1.

B8.0 Results of Pump Test

The pump well (PW01) and monitoring well 1 (MW1) were located in an area where springs were noted. Groundwater levels prior to the test were observed to be slightly artesian with the water level being approximately 0.5m above surrounding ground levels before any pumping commenced. Based on an examination of the exploratory hole logs from the main site investigation the main productive groundwater zone was observed to be within the upper section of the bedrock (approximately 2m in thickness). Observations during the drilling of the pump well indicated the bedrock at the location of the pump well was a MUDSTONE. In the pump well the groundwater productive zone was believed to be in the fractured MUDSTONE between 4.60 and 6.50m bgl. As the aquifer is overlain by a low permeability clay the aquifer has been assumed to be confined. In the analyses of the data two thicknesses of bedrock aquifer are considered. Ho₁ is the full penetrated distance of the well into the bedrock (9.4m-4.6m = 4.8m) and Ho₂ is the estimated thickness of the productive zone based on the exploratory hole logs.

Over a 28.6 hour pumping period, an average estimated discharge of 1.4litres/second or 5m³/hour was achieved. Maximum drawdown in the pumping well was 7.8m (8.25m bgl). The actual drawdown in the aquifer immediately adjacent to the well was difficult to assess, but was probably close to the base of the main productive zone, around 6.5m bgl. The marked response in monitoring well MW1 suggests that the main ground water pathways are probably structurally controlled with marked response along fracture zones only. Based on the high ground water table at the location of the pump well and monitoring well MW1 and the high connectivity

between these wells, it is possible that the selected location of the pump well may represent one of the areas of higher yield within the aquifer.

The long-term yield of the well is however less than 11 the second and therefore inappropriate for the construction phase needs.

.

	Location	Easting	Northing E	levation		
	Coreholes	102105 531	148474 28	13.16		
	RC1	102366.81	148527.735	23.32		
	RC2	102702.336	148937.664	5.544		
	RC3	102235.723	148616.252	17.01		
	RC4	102235.223	148675.356	14.179		
	RC5	102313.816	148662.468	17.912		
		102297.397	148640 021	19 091		
	RC8	102272.777	148637.417	17.342		
	RC9	102457.889	148678.488	15.614		
······································	RC10	102438.558	148626.089	19.588		
	RC11	102419.581	148657.717	16.492		
Bisused)	RC12	102373.942	148688.953	13.059		
34	RC13	102507.352	148/09.383	17.084		
	RC14 PC15	102517.059	140702.075	22 28		
Concentration of the second	RC16	102567.786	148690.586	21.678		
	RC17	102543.067	148726.548	18.552		
1. Berne 1.	RC18	102631.079	148783.914	19.002		
	RC19	102648.523	148842.776	12.965		
	RC20	102709.254	148826.109	18.096		
	RC21	102694.453	148/68.896	21.507		
14.00 Karana	RC22	102008.945	148540 507	13.107		
	RC24	102077.684	148503.385	10.571		
	RC25	102234.404	148450.017	19.023		
in the second	RC26	102163.972	148408.974	16.613		
	Trial Pits	100007.004	440000 704	49.067		
\prec		102227.834	148083.794	18.907		
$\langle \cdot \rangle$	1F2	102784 093	148386.066	23.135		
	TP4	102183.249	148386.634	18.262		
	TP5	102084.892	148387.388	13.169		
	TP6	102383.71	148481.047	25.687		
	TP7	102282.167	148483.421	21.396		
	TP8	102170.614	148486.777	15.956		
$ \land \land$	TD10	102080.012	140490.90	8 439		
	1P10	102002.000	148534 317	12.379		
	TP12	101937.024	148584.019	6.815		
	TP13	102036.707	148583.319	7.214		
	TP 14	102133.171	148587.347	10.939		
	TP15	102232.088	148587.272	17.607		
	TP 16	102336.659	148584.49	20.238		
	1P1/ TP18	102433.073	148582 374	26,926		
	TP19	102634.942	148585.631	31.035		
	TP20	102735.74	148668.155	29.318		
	TP21	102632.779	148641.615	28.127		
	TP22	102535.095	148686.732	20.12		
	TP23	102434.595		14.984		
	TP25	102344.838	140/09.012	13 653		
	TP26	102785 74	5 148780.436	23.428		
	TP27	102684.656	6 148781.265	20.431		
	TP28	102584.995	5 148784.831	16.9		
	TP29	102485.326	6 148780.418	8.962		
	TP30	102734.67	1 148875.129	15.883		
	TP31	102633.42	5 148882.664	8.917		
		DIID	15 Oliver Plunkett Str. Tel 021-4277670	eet Conk © Tax 021-4272345		
CTION LINES	IA	RUP	EMail conk@arup.com			
TION FIGURES			DUBLIN CORK	LINERICK		
	Scales 1	:5000 @ A3	Drigin	ator EG		
	Checked	Арргочес	1 Date	07.02.07		
	Job No.	070 40	Drawing No.			

Project No. 12239

LNG Ballylongford

Figure B:2

.

Project No. 12239

۰.

LNG Ballylongford

۰.

•

·. •

Figure B:3

.

--- MW2 -- MW1 — PW1 Ballylongford - Pump Test PW1: Drawdown in Pumping Well versus Time and response in MW1 (RC23) and MW2 (RC7) LNG Ballylongford Drawdown (metres O.D.) 12.00 11.00 7.00 6.00 5.00 14.00 13.00 Project 12239

Figure B:4

Elapsed Time (seconds)

60000

40000

20000

0

4.00

Pump , PW1

Pump Test PW1

LNG Ballylongford

Project No. 12239

Project 12239

LNG Ballylongford

.

١W٢ Pump Test/Step

Project No. 12239

LNG Ballylongford

Figure B:7

. •

Project 12239

13

12

;

10

14

LNG Ballylongford

• .

Ster . PW1

25000

20000

15000

10000

5000

0

4

~

ω

δ

Drawdown (metres O.D.)

୰

ŝ

Elapsed Time (seconds)

Figure B:8

LNG Ballylongford Project No: 12239

Pump Test and Step Test Data Sheet

PW1

Test No: 1

riginal Conditions			
Operative	COL	Aquifer Type	Confined
Weather	Showers (both tests)	Geology	Fractured MUDSTONE
Pump	Grundfos SP30	Aquifer Note	Upper fractured MUDSTONE most productive (c.4.60m-c.6.50m)
inlet	8.77m bgl	Development	Airlifting during drilling
Installation	05/01/2007	Recording	Logger/Manual Correction
Borehole Diameter	165mm	Monitoring Wells	2 No. ·
Screen	140mm ID(HDPE)	Recharge Bounderies	None Known locally
Test Zone	4.60m - 9.40m bgi	Other reading:	Temperature (Conductivity)
ate: Revehole located in area	of topographical coring		

Step Test

S1	art	En	d		Duration	
Date	Time	Date	Time	Hours	Minutes	seconds
06/01/2007	10:33:30	06/01/2007	16:44	6.1833	371	2260

Drawdown/Response Details

		PW2 Step Test							
		Step 1	Step 2	Step 3	Step 4				
	Rest	t120mns	t240mns	1360mns	371mns				
Water level mbgi	-0.09	2.92	4.57	6.76	7.92				
Drawdown (m)	0.00	-3.01	-4.66	-6.85	-8.01				
Ds (m)	n/a	3.01	1.65	2.19	1.16				
Ds (residuals-graph)	n/a	2.59	1.5	2.09	1.06				
Discharge (I/s)	0	1.98	2.79	2.83	3.02				

 Discharge (Vs)
 0
 1.98
 2.79
 2.83

 Figures 5-7
 Discharge during each step difficult to assess

Pump Test

St	art	En	d		Duration
Date	Time	Date	Time	Hours	Minutes Seconds
07/01/2007	11:33:30	08/01/2007	16:11:30	8.6333 17	17.998 103079.9

Drawdown/Response Details

				Radial	Rest Wi	WI mO.D	wi	WLm 0D./24		Base of	Base of			
Borehole	Easting	Northing	m O.D.	Distance	(m bgl)	Rest	(24hrs)	hrs)	s (24hrs)	Aquifer 1	Aquifer 2	top confin	Ho	Ho ₂
PW1	102105.5	148479.3	13.16		0.46	2.70	8.20	.50 -7	74 9	40 6.	0 4.6	0 4	80 1.90	
MW1	102143.4	148540.5	13.11	71.97	0.27	2.84	8.17	.67 -2	90 7.	50 7 <u>-</u>	0 6.7	þ 0	80 0.80	
MW2	102272.7	148640.0	19.09	231.92	4.67	4.42	.73 9	69 -0	DG 29	00 14.	0 1.7	27	30 12.80	
Figures 1 - 4											Average		10.97	5.17

Monitoring Wells

MW2

-0.05

c. 2 l/s

<1 1/s

1.69

1.63

MW1

2.64

0.05

2.58

Estimated maximum 90miniute well yield

WL rest (mbgl)

Drawdown

. end (mbgi)

Estimated long-term yeid

•

• •

Discharge Details

intial Reading	Final Reading	Take (modelled)	Discharge (I/s)	Ave (I/s)	Ave (m ³ /s)
n/a	п/а	145600	0.91	1,4124968	0.001412 Due to low level of discharge some results are based on manual readings;
Table B	:1				Total discharge is therefore modelled not measured.

Appendix B:1 Corehole Field Records (Figure B9 - B11)

(2) (2)	GEOTECH						CHNI	CAL CORI	E LOG R	ECORI	D			REPO	rt NU	IMBER 239
lag		7										DBU				
CON	NTRA	CT	Ta	rbet/E	Ballylongfo	rd Onshoi	e Sl					DRILLHO	LE NO		PW0 Sheel	11 1 1 of 1
CO -	ORD	INAT	ES(_)	102,105.5 148,474.3	60 E 10 N		GROUND LE	VEL (m) ETER (mm)	13	3.16	DATE ST	ARTEL	D	17/12 17/12	/2006 //2006
CLI	ent Sinee	R	Sh Ar	nanno up Co	n LNG nsulting Er	igineers		INCLINATION FLUSH	N	A	IR/MIST	DRILLED LOGGED	BY BY		Mill D IGSL	Inill
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fractu Spacir (mm)	re Ig) 500	Legend	Descrip	ntion	Depth (m)	Disco	ntinuities		Elevation (mOD)	Standpipe Details	SPT (N Value)
	EMAF 50mm gl to +	a a					SYMMETRIX O DRILLING: Ob driller as returns gravel. SYMMETRIX O DRILLING: Ot driller as grave siltstone/mudst bedrock.	DPEN HOLE served by s of clay and OPEN HOLE oserved by I size returns tone. Probab	4.60 of le 10.00 TION REM ell Screen	IARKS			8.56			
BKC.G									Date	Hole Depth	Casing Depth	Depth to Water	Comn	nents		
12235						<u></u>			17-12-06				Stand	ling 0.5	50m at	oove GL
1907	Dat	LLA'	Tip	DET/	RZ TOD	RZ Base	1	Туре	-							
	7-12	-07	10	.00	4.60	10.00										Figure B 9

	1														REPO	RT NL	JMBER
	st) GS				G	EOTEC	HN	ICAL CORE	E LOG R	ECO	RI	D				122	239
CO	NTR/	СТ	Та	rbet/l	Ballylongfo	rd Onshoi	e Sl						DRILLHO	DLE NO	D	RCO	7
co	-ORD	INAT	ES(_)	102,272.7 148,640.0	72 E 02 N		GROUND LE	VEL (m) ETER (mm)		19 1(9.09 02	DATE SI DATE C	ARTE	D ETED	22/11 24/11	/2006 /2006
	IENT	=D	St	ianno		minoore			i		Δ	DAIST	DRILLE	BY		Mill D	Drill
í E	Ê				Ansoluting Et	Igiliceis		ILLION	·,·		Î		LOGGE			1002	
Downhole Depth (Core Run Depth (T.C.R.%	S.C.R.%	R.Q.D.%	Fractu Spacir (mm ₀ ²⁵⁰	re 1g) 500	Legend	Descrip	tion	Denth (m)	/iiA indom	Disco	ntinuities		Elevation (mOD)	Standpipe Detalls	SPT (Ņ Value)
	2.50 3.50 4.70 6.30 6.70 8.20	100 100 100 100	83 42 41 91	24 11 9 0 22		59		SYMMETRIX O DRILLING: Obs driller as returns gravel. SYMMETRIX O DRILLING: Obs driller as gravel sandstone/siltst Probable bedrow Strong to locally strong, thinly be fine grained SA interbedded wit medium grainee Fresh to locally weathered. Moderately stro strong, thinly be grey/dark grey, SILTSTONE/M showing cross- Fresh to slightly	PEN HOLE served by s of clay and PPEN HOLE served by size returns of one . ck. / moderately dded, grey, NDSTONE, h fine to d siltstone. * slightly ong to locally edded, fine grained UDSTONE, stratification. / weathered.	of 2.	70 50	Discontinu to smooth locally und Apertures locally mo with iron c locally cla (3.18m-3. Dips are 3 sub-vertic (2.79m-2. <u>3.55m-3.</u> Discontinu smooth, p undulose. tight to op commonly stained at clay smea (3.99m-4. 4.8m-4.8 6.79m) st 30° and k fractures 4.22m-4. 7.46m-7. 7.98m-8.	lities are roo , planar and dulose. are tight to derately op xide staine y/gravel infi 2m) surfac 30° and loca al fractures 95m, 75m). uities are blanar and lo . Apertures pen with y iron oxide nd common ared .08m, 8m, 5.56m, urfaces. Dij ocally sub-v (3.88m-3.9 26m, 62m, 38m).	ugh d and lied as. ally ocally are ly os are ertical 9m,	17.39		N = 50/130 mm (9, 13, 10, 19, 21)
L s		100	52	28	F		× × × × × × ×			9	.00			<u></u> ,	10.09		
	9.80	SKS	S						INSTALLA		EM	IARKS				<u> </u>	
	/aters	trike : 0m-2	at 3.8	m. 14 Malia	4 Core box	es. 1 Wa	vin Pip	e installed	ol And, Y & spaged of								<u></u>
122	V.	J.11-2							GROUNDW	ATER	DF	TAILS		· · · · · ·	·		
j j									Date	Hol	8	Casing	Depth to	Com	ments		
185221									22-11-06	Dep	n_	Depth	3.80	Wate	erstrike		
	ISTA	LLAT	ION	DET/	AILS												
	Dat	e	Tip Depth RZ Top RZ Base Type				Туре									Figure B10 (1 of 3)	

GEOTECHNICAL CORE LOG RECORD

REPORT NUMBER

	68	Y			G	EOIE	CHIN	ICAL COR	ELUGI		JOK	U				122	239
co	NTR	ACT	Τε	nbet/	Ballylongfo	ord Onsho	re Sl						DRILLH	DLE NO))	RC0	7 2 of 3
co	-ORD	DINA	TES(_)	102,272. 148,640.	72 E 02 N		GROUND LE	EVEL (m)		11	9.09 02	DATE S	TARTE	D	22/11	/2006
	ENT		St	nanno un Co	on LNG	nainoom			N				DRILLE	D BY		Mill D	rill
Ê	2			up C		nymeers		FLUSH				IR/MIST	LOGGE	<u>D BA</u>		IGSL	
Downhole Depth (r	Core Run Depth (n	T.C.R.%	s.c.R.%	R.Q.D.%	Fracti Spaci (mr 0 ²⁵⁰	ure ing 1) 500	Legend	Descrij	ption		Depth (m)	Disc	ontinuities		Elevation (mOD)	Standpipe Details	SPT (N Value)
- 10 	11 40	100	0 50 14 X × x strong (axiall × x strong and lo × weak, thinly l × x dark grey, fin × x strong and lo × x weak, thinly l × x dark grey, fin × x strong and lo × x weak, thinly l × x dark grey, fin × x strong and lo × x weak, thinly l × x dark grey, fin × x strong and lo × x strong and lo × x strong and lo × x dark grey, fin × x strong and lo × x strong and lo × x weak, thinly l × x dark grey, fin × x strong and lo × x strong and strong and lo × x strong and lo × x strong an						to moderate ally moderate dded, grey al grained IUDSTONE inly bedded, ne/very fine	ly ly nd		Discontin smooth, j undulose tight to m and local 30° and l fractures	uities are olanar and lo . Apertures oderately op ly open. Dip ocally sub-ve (9.06m-9.09	cally are en s are ertical 9m,			
- 12	45.00	100	65	13			*****	sandstone), ex cross-stratifica locally slightly v (continued)	ibiting tion. Fresh t weathered.	o		9.17m-9. 9.26m-9. 9.71m-9. 10.16m- 10.56m- smeared 12.16m- 13.25m-	22m, 48m, 8m, 10.21m, 10.75m[clay], 12.58m, 13.41m.				
- 13 	12.90	100	45	8	Ē		***********					14.63m- 16.04m- 18.56m- (continue)	14.7m, 16.12m, 18.85m). ed)				
15	14.50	100	94	37			*****										
- 10	16.10	100	94	54			<pre></pre>										
- 18	17.70	100	76	63	Ē		*****			į							
- 13 -	19.20						× × × ×										
							× × × × ×										
RE	MAR	XKS	at 3 8	m 1/	Comboy	1 Ma	vin Pi-	e installed	INSTALLA	TION	REM	ARKS				•	
fro	m 0.0)m-2.	5m.	Malir	Head On	dnance Da	atum u	ised									
5								•	GROUND	VATE	RDE	TAILS		1			
2 Ion									Date		iole epth	Casing Depth	Depth to Water	Comn	nents		
IN:	STAI	LAT		DETA	VILS												
	Date	ə	Tip D	lepth	RZ Top	RZ Base		Туре								·Fi	igure B10 (2 of 3)

GEOTECHNICAL CORE LOG RECORD

REPORT NUMBER

12239

<u> </u>	_															
CON	TRA	CT	Та	rbet/l	Ballylongfo	ord Onsho	re SI					DRILLH	OLE NO)	RC0 Shee	17 t3 of 3
CO-(ORD	INAT	'ES(_	_)	102,272. 148,640.	72 E 02 N		GROUND LE	:VEL (m) ETER (mm)		19.09 102	DATE S DATE C	TARTE	D	22/11 24/11	1/2006 1/2006
CLIE ENG	INEE	R	Sh An	ianno up Co	on LNG onsulting E	ngineers		INCLINATIO	N		AIR/MIST	DRILLE	D BY D BY		Mili D Igsl	Drill
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fractu Spacia (mm 0 250	ure ng 1) 500	Legend	Descrip	bion	Depth (m)	Disc	ontinuities		Elevation (mOD)	Standpipe Details	SPT (N Value)
20	20.80		100	59			****	Strong (axially) strong and loca weak, thinly bed dark grey, fine g SILTSTONE/M	to moderately lly moderately dded, grey and grained UDSTONE	, , 1	Discontin smooth, j undulose tight to m and local	uities are planar and lo . Apertures oderately op ly open. Dip	cally are en s are			
22		100	58	53			****	medium siltstor sandstone), exi cross-stratificat locally slightly v (continued)	hiy bedded, he/very fine biting tion. Fresh to veathered.	21.50	fractures 9.17m-9. 9.26m-9. 9.71m-9. 10.16m-	(9.06m-9.09 22m, 48m, 8m, 10.21m,)m,	-2.41		
23	22.40	100	94	59			******	strong to locally strong, thinly be grey/dark grey, SST/SILT/MUE cross-stratifical slightly weather	y moderately edded, fine grained DST, showing tion. Fresh to red.		10.56m- smeared 12.16m- 13.25m- 14.63m- 16.04m- 18.56m- <u>Continue</u>	10.75m[Clay], 12.58m, 13.41m, 14.7m, 16.12m, 18.85m). ed)				
24 2	24.00	100	97	63			*****				smooth, rough to undulose tight to o to 45° ar sub-verti (21.51m 22.34m]	planar and ic smooth and e. Apertures pen. Dips al nd locally ical fractures -21.86m, 60°], 22.5m[are ne 30°			
26	25.50	100	96	77			******				22.4m-2	2.73m).				
- 27	27.10 27.50	100	100	100			****									
28		100	100	97			*****			20.0						
- 29 -	29.00						××	End of Coreho	ole at 29 (m)	29.0				-9.91		
RE	MAR	IKS rike a	at 3.8	m. 14	Core box	kes. 1 Wa	vin Pir	e installed	INSTALLAT	ION RE	MARKS	·····				
fror	n 0.0)m-2	5m.	Malir	Head Or	dnance D	atum u	sed								
									GROUNDW	Hole	Casing	Depth to	Com			
									LJATE	Depth	Depth	Water	Comn	ients		
INS	Date	LAT	ion i Tip C	DET#	RZ Top	RZ Base		Туре								Figure B10

	(t)				CE	OTEC	LIND			COP	n			REPO		ABER
	gs	J			GE	UIEC	TINI	CAL CORE		2000					122	39
co	NTRA	CT	Ta	rbet/B	allylongford	l Onshore	SI	······				DRILLHO	LENC)	RC23	1.052
co	-ORD	INAT	ES(_	.)	102,143.38 148,540.5	5 E I N		GROUND LEV	'EL (m) TER (mm)	1	3.11 02	DATE ST	ARTE	D	16/11/2 17/11/2	2006 2006
	ENT	-R	Sh	annor In Col	n LNG Isulting Eng	ineers		INCLINATION		A	IR/MIST	DRILLED	BY BY		Mill Dr IGSL	11
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.a.D.%	Fractur Spacin (mm) 250	e J 500	Legend	Descripti	ion	Depth (m)	Disco	ntinuities		Elevation (mOD)	Standpipe Detalis	SPT (N Value)
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.0 3 7.9 9 9.4 REMA Vater Datum	0 100 100 100 100	21) 21 at 6.	0 42 7m. 6	Core boxe	s. Malin H		SYMMETRIX OF DRILLING: Obs driller as returns gravel and cobble SYMMETRIX OF DRILLING: Ob driller as gravel Probable bee Moderately was moderately strong MUDSTONE/S Moderately to I weathered. Strong to locall strong, thin to I bedding, grey, grained SAND lenses of siltste locally slightly.	DPEN HOLE erved by of clay and es. DPEN HOLE served by size returns frock. ak to orally slightly y moderately medium fine to mediu STONE with one. Fresh t weathered. INSTALLA GROUNDW Date 16-11-06	6.7(7.0(of 8.0) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Disconti and und are oper moderat commor surfaces and irree Disconti and und and loca Aperture moderat 10° and and loca Aperture moderat 10° and and irree MARKS	nuifies are sn ulose. Apertin to locally ely open with ly clay smea . Dips are 11 <u>jular fracture</u> nuities are ro ulose to plan ily smooth. Is are open to locally sub 9 gular fracture gular fracture Depth to Water 6.70	nooth ures red 0° s. ops are 0° ss.	6.41 6.11 5.11		N = 27 (2, 5, 4, 7, 6, 10) N = 15 (1, 2, 3, 1, 4, 7) N = 35 (3, 5, 8, 9, 8, 10) N = 41 (19, 6, 11, 7, 10, 13)
100	NST/			DET	AILS	D7 D		Time							,	Linux D1
IC OLDL	Da 17-1	ate 1-06	1 ip 7	.50	5.00	7.50	5	iomm SP							i	rigure Bl (1 of 2)

1	1														REPO	RTNU	MBER
	et Gs				GE	OTEC	HN	ICAL CORE	LOG RI	ECO	RE)				122	39
CO	NTRA	CT	Та	rbet/l	Ballyiongfor	d Onshor	e Sl		<u></u>				DRILLHO	ENC	2	RC23	3 2 of 2
со	-ORD	INAT	ES(_	_)	102,143.3 148,540.5	5 E 1 N		GROUND LEV	/EL (m) TER (mm)		13 10	1.11 12	DATE ST/ DATE CO	ARTE MPLI	D ETED	16/11/ 17/11/	2006 2006
CLI EN	IENT GINEI	ER	Sł Ar	ianno up Co	on LNG onsulting En	gineers		INCLINATION FLUSH	l		AI	R/MIST	DRILLED LOGGED	BY BY		Mill Di IGSL	111
Downhole Depth (m)	Core Run Depth (m)	T.C.R.%	S.C.R.%	R.Q.D.%	Fractur Spacin (mm) 0 ²⁵⁰	500	Legend	Descript	ion	Denth (m)	/w/ mahaa	Discor	ntinuities		Elevation (mOD)	Standpipe Details	SPT (N Value)
	10.90	100	93	73				Strong to locally strong, thin to m bedding, grey, fit grained SANDS lenses of siltstor locally slightly we (continued)	moderately ledium ne to medium TONE with ne. Fresh to eathered.	1	.60	Discontinui and undulo and locally Apertures a moderately 10° and loc and irregul (continued	ities are roug se to planar smooth. are open to open. Dips cally sub 90° ar fractures.	µh ; are			
	3 4	100	77	34			*****	Strong to model and very locally weak, thinly bec stratified), grey/ to locally mediu SILTSTONE/MI with lenses of s Fresh to locally weathered.	rately strong moderately ided (cross dark grey, fin m grained UDSTONE sandstone. slightly	e		Discontinu and planar Apertures locally tigh clay smea Dips are 1 90° fractu	ities are sma to undulose are open to at with comm red surfaces 0° and local res.	ooth a. ionly a. ly	0.51		
مديابين	5	100	96	34	E		*****										
	⁶ 16.1	100	85	63			******										
1	16.8	100	57	20			* * *	End of Corehol	le at 16.8 (m)	10	<u>6.80</u>				-3.69	, []	
	18																
11/02																	
₩ 100 1 1 100 1 100 1 100 100 100 100 10	REMA Vater	RKS strike	at 6.	7m. 6	Core boxe	s. Malin	Head	Ordnance	INSTALLA	TION I	REN	IARKS					
1GSL.(Datum	USEC	1						COOLBIDY	1							
C.GPJ									GROUNDY	Ho	le	Casing	Depth to	Corr	mente		
2239RI									Dale	Dep	oth	Depth	Water				
5	NST/		TION	DET	AILS											2	Figure R1
COLDL	Date Tip Depth RZ Top RZ Base Type 17-11-06 7.50 5.00 7.50 50mm SP																(2 of 2)

Appendix B:2 Digital Pump Test Readings